
MQSeries® for OS/390®

Concepts and Planning Guide
Version 5 Release 2

GC34-5650-00

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix C.
Notices” on page 161.

First edition (November 2000)

This edition applies to MQSeries for OS/390 Version 5 Release 2, and to all subsequent releases and modifications
until otherwise indicated in new editions.

This book is based on parts of the MQSeries for OS/390 System Management Guide, SC34-5374-01.

© Copyright International Business Machines Corporation 1993, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this book xi
Who this book is for xi
What you need to know to understand this book . . xi
Conventions used in this book xi
What’s new for this release xii

Part 1. Introduction 1

Chapter 1. Introduction 3
What is a queue manager?. 3

The queue manager subsystem 3
Shared queues 4
Page sets and buffer pools 4
Logging 5
Tailoring the queue manager environment . . . 5
Recovery and restart 5
Security 6
Availability 6
Manipulating objects. 6
Monitoring and statistics 6
Application environments 6
Internet Gateway 6

What is a channel initiator? 7
Queue manager clusters 8

Part 2. MQSeries for OS/390
concepts 9

Chapter 2. Shared queues and
queue-sharing groups 11
What is a shared queue? 11

Messages can be accessed by any queue manager 11
Queue definition shared by all queue managers 12

What is a queue-sharing group? 13
Where are shared queue messages held?. 15

The Coupling Facility 15
Advantages of using shared queues 16

High availability. 16
Distributed queuing and queue-sharing groups . . 18

Shared channels 18
Intra-group queuing 20
Clusters and queue-sharing groups 21

Application programming with shared queues. . . 22
Serializing your applications. 22
Applications that are not suitable for use with
shared queues 23
Deciding whether to share non-application
queues 24

Migrating your existing applications to use
shared queues 24

Where to find more information 26

Chapter 3. Storage management. . . . 27
Page sets 27
Storage classes 28

How storage classes work 28
Buffers and buffer pools 30
Where to find more information 31

Chapter 4. Logging 33
What logs are. 33

Archiving 33
Dual logging 34
Log data 34
Unit-of-recovery log records 34
Checkpoint records 35
Page set control records 35

How the log is structured 35
Physical and logical log records 35

How the logs are written 36
When the active log is written 36
When the archive log is written 37
MQSeries and SMS 38

What the bootstrap data set is for 39
Archive log data sets and BSDS copies 40

Where to find more information 40

Chapter 5. Defining your system. . . . 41
Setting system parameters 41
Defining system objects 42

System default objects 42
System command objects 42
System administration objects 43
Channel queues 43
Cluster queues 43
Queue-sharing group queues 43
Storage classes 44
Dead-letter queue 44
Default transmission queue 44

Sample definitions supplied with MQSeries . . . 45
The CSQINP1 sample 45
CSQ4INSG system object sample 45
CSQ4INSS system object sample 45
CSQ4INSX system object sample 46
CSQ4INYC object sample. 46
CSQ4INYD object sample. 46
CSQ4INYG object sample. 47
CSQ4DISP display sample 47
CSQ4DISQ distributed queuing using CICS
sample 48
CSQ4INPX sample 48
CSQ4IVPQ and CSQ4IVPG samples 48

Where to find more information 48

© Copyright IBM Corp. 1993, 2000 iii

Chapter 6. Recovery and restart 49
How changes are made to data 49

Units of recovery 49
Backing out work 50

How consistency is maintained 51
Consistency with CICS or IMS 51
How consistency is maintained after an abnormal
termination 53

What happens during termination 54
Normal termination 54
Abnormal termination 54

What happens during restart and recovery 55
Rebuilding queue indexes 55

How in-doubt units of recovery are resolved . . . 56
How in-doubt units of recovery are resolved
from CICS 56
How in-doubt units of recovery are resolved
from IMS 57
How in-doubt units of recovery are resolved
from RRS 58

Shared queue recovery 59
Transactional recovery 59
Peer recovery 59
Shared queue definitions 60
Coupling Facility failure 60

Where to find more information 60

Chapter 7. Security 61
Why you need to protect MQSeries resources . . . 61

If you do nothing 61
Security controls and options 62

Subsystem security 62
Queue manager or queue-sharing group level
checking 62
Controlling the number of user IDs checked . . 63

Resources you can protect 64
Connection security 64
API-resource security 64
Command security 66
Command resource security 67

Channel security. 67
Where to find more information 67

Chapter 8. Availability 69
Shared queues 69
Shared channels 70
Using the OS/390 Automatic Restart Manager
(ARM) 71
Using the OS/390 Extended Recovery Facility (XRF) 72
Where to find more information 72

Chapter 9. Creating and managing
objects. 73
Issuing commands 73

Private and global definitions 73
Directing commands to different queue managers 75
Administrator commands. 75
System control commands 76
Initialization commands 77

The MQSeries for OS/390 utilities 79

The CSQUTIL utility 79
The data conversion exit utility 79
The change log inventory utility 80
The print log map utility 80
The log print utility 80
The queue-sharing group utility 80
The dead-letter queue handler utility 80

Where to find more information 81

Chapter 10. Monitoring and statistics 83
MQSeries trace 83
Events 83
Where to find more information 84

Part 3. MQSeries and other
products 85

Chapter 11. MQSeries and CICS 87
The CICS adapter 87

Control functions 88
MQI support 88
Adapter components 88
Alert monitor. 90
Auto-reconnect 90
Task initiator 90
Multi-tasking 91
The API-crossing exit 91
CICS adapter conventions 92

The CICS bridge. 93
When to use the CICS bridge 93
Running CICS DPL programs 94
Running CICS 3270 transactions 95

Where to find more information 97

Chapter 12. MQSeries and IMS 99
The IMS adapter. 99

Using the adapter 100
System administration and operation with IMS 100
The IMS trigger monitor. 100

The IMS bridge. 101
What is OTMA? 102
Submitting IMS transactions from MQSeries . . 102

Where to find more information 102

Chapter 13. MQSeries and OS/390
Batch and TSO. 103
Introduction to the Batch adapters 103
The Batch/TSO adapter 104
The RRS adapter 104
Where to find more information 104

Part 4. Planning your MQSeries
environment 105

Chapter 14. Planning your storage
requirements 107
Address space storage 107

Private region storage usage 107

iv Concepts and Planning Guide

Region sizes 108
Logs and archive storage 109
DB2 storage 110
Coupling Facility storage 111
Page set and message storage 111
Library storage 111
Where to find more information 111

Chapter 15. Planning your page sets
and buffer pools 113
Planning your page sets 113
Calculating the size of your page sets 114

Page set zero 114
Page sets 01 to 99 115

Enabling dynamic page set expansion 118
How to determine an appropriate secondary
extent value 118
Number of extents available 118
Multivolume data sets 119

Defining your buffer pools 120

Chapter 16. Planning your Coupling
Facility and DB2 environment 123
Defining Coupling Facility resources 123

Planning your structures 123
Planning the size of your structures 124
Mapping shared queues to structures 126

Planning your DB2 environment 126

Chapter 17. Planning your logging
environment 127
Planning your logs 127

Log data set definitions 127
Planning your archive storage 129

Should your archive logs reside on tape or
DASD? 129

Chapter 18. Planning for backup and
recovery 131
Recovery procedures 131
General tips for backup and recovery 132

Periodically take backup copies 132
Do not discard archive logs you might need . . 133
Do not change the DDname to page set
association 133

Recovering page sets 134
How often should a page set be backed up? . . 134

Achieving specific recovery targets 136
Periodic review of backup frequency 137

Backup and recovery with DFHSM 137
MQSeries recovery and CICS 138
MQSeries recovery and IMS 138
Preparing for recovery on an alternative site . . . 138

Part 5. Planning to install
MQSeries 139

Chapter 19. MQSeries Prerequisites 141

Machine requirements 141
Software requirements 141

Additional requirements for some features . . 142
Non-IBM products 142
Clients 142

Delivery 142

Chapter 20. Making MQSeries
available 143
Installing MQSeries for OS/390 143

National language support 143
Communications protocol and distributed
queuing 144
Naming conventions 144
Using command prefix strings. 146

Customizing MQSeries and its adapters 147
Verifying your installation of MQSeries for OS/390 147

Chapter 21. Migrating from previous
versions 149
What’s new for this release 149

Queue-sharing groups 149
Channel initiator 149
Commands 150
System parameters 150
System object samples 151
Logs 151
Security 151
Statistics and accounting 151
Operations and control panels 152
Dead-letter queue 152
Application programming 152

What to do when you migrate from a previous
version 153

Reverting to a previous version 154

Part 6. Appendixes 155

Appendix A. Macros intended for
customer use 157
General-use programming interface macros . . . 157
Product-sensitive programming interface macros 157
General-use programming interface copy files . . 157
General-use programming interface include files 158

Appendix B. Measured usage license
charges with MQSeries for OS/390 . . 159

Appendix C. Notices 161
Trademarks 163

Glossary of terms and abbreviations 165

Bibliography. 175
MQSeries cross-platform publications 175
MQSeries platform-specific publications 175
Softcopy books 176

HTML format 176

Contents v

Portable Document Format (PDF) 176
BookManager® format 177
PostScript format 177
Windows Help format 177

MQSeries information available on the Internet . . 177
Related publications 177

OS/390 177
CICS Transaction Server for OS/390 177
CICS for MVS/ESA Version 4 177

IMS 177
DFSMS/MVS 177
Other products 177

Index 179

Sending your comments to IBM . . . 185

vi Concepts and Planning Guide

Figures

1. Overview of MQSeries for OS/390 4
2. Communication between queue managers 7
3. A queue-sharing group. 12
4. The components of queue managers in a

queue-sharing group 13
5. Multiple instances of an application servicing a

shared queue 17
6. Distributed queuing and queue-sharing groups 18
7. A queue-sharing group as part of a cluster 21
8. Mapping queues to page sets through storage

classes 28
9. Buffers, buffer pools, and page sets 30

10. The logging process 36
11. The off-loading process 37
12. A unit of recovery within an application

program 49
13. A unit of recovery showing back out 50

14. The two-phase commit process 52
15. How CICS, the CICS adapter, and an

MQSeries subsystem are related. 89
16. Components and data flow to run a CICS DPL

program 94
17. Components and data flow to run a CICS 3270

transaction 96
18. The MQSeries-IMS bridge 101
19. Calculating the number of records to specify

in the cluster for the log data set 109
20. How MQSeries stores short messages on page

sets 116
21. How MQSeries stores long messages on page

sets 116
22. Calculating the size of a Coupling Facility

structure 124

© Copyright IBM Corp. 1993, 2000 vii

viii Concepts and Planning Guide

Tables

1. When to use a shared-initiation queue . . . 25
2. Where to find more information about shared

queues and queue-sharing groups 26
3. Where to find more information about storage

management 31
4. Where to find more information about logging 40
5. MQSeries sample definitions for system objects 45
6. Where to find more information about system

parameters and system objects 48
7. Termination using QUIESCE, FORCE, and

RESTART 54
8. Where to find more information about

recovery and restart 60
9. Where to find more information about security 67

10. Where to find more information about
availability 72

11. Summary of MQSeries administrator
commands 75

12. System control commands 76
13. Where to find more information about creating

and managing objects 81
14. Where to find more information about

monitoring and statistics 84
15. Where to find more information about using

CICS with MQSeries 97
16. Where to find more information about using

IMS with MQSeries 102
17. Where to find more information about using

OS/390 Batch with MQSeries 104
18. Suggested definitions for JCL region sizes 108
19. Planning your DB2 storage requirements 110
20. Where to find more information about storage

requirements 111
21. Suggested definitions for buffer pool settings 120
22. Suggested definitions for log and bootstrap

data sets 127

© Copyright IBM Corp. 1993, 2000 ix

x Concepts and Planning Guide

About this book

This book describes the concepts of MQSeries® for OS/390®; it does not describe
the concepts of MQSeries messaging and queuing. If you are unfamiliar with these
concepts, you should read MQSeries: An Introduction to Messaging and Queuing. It
also describes how to plan your MQSeries for OS/390 systems.

This book is based on parts of the MQSeries for OS/390 Version 2.1 System
Management Guide and the MQSeries Planning Guide.

The System Management Guide has been replaced by the following three books:
v MQSeries for OS/390 Concepts and Planning Guide. (This book.)
v MQSeries for OS/390 System Setup Guide. This book describes the tasks that you

have to perform to customize MQSeries after you have installed it. It also
describes how to monitor system use and performance, and how to set up
security.

v MQSeries for OS/390 System Administration Guide. This book describes how to
operate MQSeries, how to perform recovery and restart tasks, and how to use
the panel interface and utilities supplied with MQSeries.

Who this book is for
This book is for:
v Planners of OS/390 systems that will use MQSeries message queuing techniques.
v System Programmers who have to install, customize, and operate MQSeries for

OS/390.

What you need to know to understand this book
This book assumes you are familiar with the basic concepts of:
v CICS®

v DB2® (if you are going to use queue-sharing groups)
v IMS™

v MQSeries
v OS/390
v The OS/390 Coupling Facility (if you are going to use queue-sharing groups)

Conventions used in this book
v Throughout this book, the term object refers to any MQSeries queue manager,

queue, namelist, channel, storage class, or process.
v The examples in this book are taken from a queue manager with a command

prefix string (CPF) of +CSQ1. The commands are shown in UPPERCASE.
v CICS means both CICS Transaction Server for OS/390 and CICS for MVS/ESA™

unless otherwise stated. IMS means IMS/ESA® unless otherwise stated.
v Throughout this book, the default value thlqual is used to indicate the target

library high-level qualifier for MQSeries data sets in your installation.
v Throughout this book, the term distributed queuing refers to the distributed

queuing feature (also known as the “non-CICS mover”). The term distributed

© Copyright IBM Corp. 1993, 2000 xi

queuing using CICS ISC is used to refer to the optional CICS distributed queuing
feature (also known as the “CICS mover”).

What’s new for this release
If you are already familiar with previous versions of MQSeries for OS/390,
“What’s new for this release” on page 149 summarizes the new functions that have
been added to for Version 5.2 and explains where to find more information about
them.

About this book

xii Concepts and Planning Guide

Part 1. Introduction

Chapter 1. Introduction 3
What is a queue manager?. 3

The queue manager subsystem 3
Shared queues 4
Page sets and buffer pools 4
Logging 5
Tailoring the queue manager environment . . . 5
Recovery and restart 5
Security 6
Availability 6
Manipulating objects. 6
Monitoring and statistics 6
Application environments 6
Internet Gateway 6

What is a channel initiator? 7
Queue manager clusters 8

© Copyright IBM Corp. 1993, 2000 1

2 Concepts and Planning Guide

Chapter 1. Introduction

This book describes things that you need to know about MQSeries for OS/390
before you can install and use it on your OS/390 system. It explains the concepts,
and gives you information to help you plan your MQSeries subsystems. It assumes
that you already know about MQSeries messages and queues. If you need to find
out about MQSeries on all platforms, see MQSeries: An Introduction to Messaging
and Queuing.

This chapter introduces the concepts you need to understand, and directs you to
more detailed explanations later in the book. It contains the following sections:
v “What is a queue manager?”
v “What is a channel initiator?” on page 7

What is a queue manager?
Before you can let your application programs use MQSeries on your OS/390
system, you must install the MQSeries for OS/390 product and start a queue
manager. The queue manager owns and manages the set of resources that are used
by MQSeries. These resources include:
v Page sets that hold the MQSeries object definitions and message data
v Logs that are used to recover messages in the event of queue manager failure
v Processor storage
v Connections through which different application environments (CICS, IMS, and

Batch) can access the MQSeries API
v The MQSeries channel initiator, which allows communication between MQSeries

on your OS/390 system and other systems

Figure 1 on page 4 illustrates a queue manager, showing connections to different
application environments, and the channel initiator.

The queue manager subsystem
On OS/390, MQSeries runs as an OS/390 subsystem. The subsystem has a name
(the queue manager name) and applications can connect to it using this name. The
subsystem is started by executing a JCL procedure that specifies the OS/390 data
sets that contain information about the logs, and that hold object definitions and
message data (the page sets).

Any changes to the objects are logged. At restart, the objects are recovered to their
state at shutdown.

© Copyright IBM Corp. 1993, 2000 3

Shared queues
In MQSeries for OS/390 Version 5.2, the concepts of a queue-sharing group and a
shared queue are introduced. A queue-sharing group consists of a number of queue
managers, running within a single OS/390 sysplex, that are able to access the same
MQSeries object definitions and message data concurrently. Within a queue-sharing
group, the shareable object definitions are stored in a shared DB2 database, and the
messages are held inside one or more Coupling Facilities. The shared DB2 database
and the Coupling Facility structures are resources that are owned by several queue
managers.

Shared queues are discussed in “Chapter 2. Shared queues and queue-sharing
groups” on page 11.

Page sets and buffer pools
When a message is put on to a queue, the queue manager stores the data on a
page set in such a way that it can be retrieved when a subsequent operation
attempts to get a message from the same queue. If the message is removed from
the queue, space in the page set that holds the data is subsequently freed for reuse.
As the number of messages held on a queue increases so the amount of space in
the page set holding message data increases, and as the number of messages on a
queue reduces the page set space used is reduced.

MQSeries for OS/390

To other
MQSeries
systems

CICS
Appl

3

Batch
Appl

2

Adapter Adapter

IMS
Appl

1

Adapter

CICSIMS

Queue
Manager

Channel
initiator

Queues
A1 A2

Figure 1. Overview of MQSeries for OS/390

Introduction

4 Concepts and Planning Guide

To reduce the overhead of writing data to and reading data from the page sets, the
queue manager buffers the updates into processor storage. The amount of storage
used to buffer the page set access is controlled through MQSeries objects called
buffer pools.

Page sets and buffer pools are discussed in “Chapter 3. Storage management” on
page 27.

Logging
Any changes to objects held on page sets and operations on persistent messages
are recorded as log records. These log records are written to a log data set called
the active log. The name and size of the active log data set is held in a data set
called the bootstrap data set.

When the active log data set fills up, the queue manager switches to another log
data set so that logging can continue, and copies the content of the full active log
data set to an archive log data set. Information about these actions, including the
name of the archive data set, is held in the bootstrap data set. Conceptually, there
is a ring of active log data sets that the queue manager cycles through; when an
active log is filled, the log data is off-loaded to an archive log, and the active log
data set is available for reuse.

The log and bootstrap data sets are discussed in “Chapter 4. Logging” on page 33.

Tailoring the queue manager environment
When the queue manager is started, a set of initialization parameters that control
how the queue manager will operate are read. In addition, data sets containing
MQSeries commands are read, and the commands they contain are executed.
Typically, these data sets contain definitions of the system objects required for
MQSeries to run, and you can tailor these to define or initialize the MQSeries
objects necessary for your operating environment. When these data sets have been
read, any objects defined by them are stored, either on a page set or in DB2.

Initialization parameters and system objects are discussed in “Chapter 5. Defining
your system” on page 41.

Recovery and restart
At any point in time during the operation of MQSeries, there might be changes
held in processor storage that have not yet been written to the page set. These
changes are written out to the page set on a “least recently used” basis by a
background task within the queue manager.

If the queue manager should terminate abnormally, the recovery phase of queue
manager restart can recover the lost page set changes because persistent message
data is held in log records. This means that MQSeries can recover persistent
message data and object changes right up to the point of failure.

Recovery and restart are discussed in “Chapter 6. Recovery and restart” on page 49.

Introduction

Chapter 1. Introduction 5

Security
You can use an external security manager, such as RACF® to protect the resources
that MQSeries owns and manages from access by unauthorized users.

MQSeries security is discussed in “Chapter 7. Security” on page 61.

Availability
There are several features of MQSeries that are designed to increase system
availability in the event of queue manager or communications subsystem failure.
These features are discussed in “Chapter 8. Availability” on page 69.

Manipulating objects
When the queue manager is running, MQSeries objects can be manipulated either
through an OS/390 console interface, or through an administration utility that uses
ISPF services under TSO. Both mechanisms allow MQSeries objects to be defined,
altered or deleted. Various MQSeries and queue manager functions can be
controlled and status displayed.

These facilities are discussed in “Chapter 9. Creating and managing objects” on
page 73.

Monitoring and statistics
Several facilities are available to monitor your queue managers and channel
initiators. You can also collect statistics for performance evaluation and accounting
purposes.

These facilities are discussed in“Chapter 10. Monitoring and statistics” on page 83.

Application environments
When the queue manager has started, applications can connect to it and start using
the MQSeries API. These can be CICS, IMS, or Batch applications. MQSeries
applications can also access applications on CICS and IMS systems that are not
aware of MQSeries, using the CICS and IMS bridges.

These facilities are discussed in “Part 3. MQSeries and other products” on page 85.

Internet Gateway
The Internet Gateway provides a bridge between the synchronous World Wide
Web and asynchronous MQSeries applications. With the gateway, Web server
software and MQSeries together provide an Internet-connected Web browser with
access to MQSeries applications. The gateway enables enterprises to take
advantage of the low-cost access to global markets provided by the Internet, while
benefiting from the robust infrastructure and assured message delivery of
MQSeries. Users interact with the gateway through HTML fill-out form POST
requests; MQSeries applications respond by returning HTML pages to the gateway,
via an MQSeries queue. The MQSeries Internet Gateway supports the CGI and
ICAPI Web server interfaces.

The Internet Gateway is an optional feature of MQSeries, and is supplied on the
MQSeries product tape or cartridge. It is described in the MQSeries Internet Gateway
for MVS User’s Guide which is available on the Web at:
http://www.ibm.com/software/mqseries/library/manuals/

Introduction

6 Concepts and Planning Guide

What is a channel initiator?
The channel initiator provides and manages resources that allow MQSeries
distributed queuing. MQSeries uses Message Channel Agents (MCAs) to send
messages from one queue manager to another.

To send messages from queue manager A to queue manager B, a sending MCA on
queue manager A must set up a communications link to queue manager B. A
receiving MCA must be started on queue manager B to receive messages from the
communications link. This one-way path consisting of the sending MCA, the
communications link, and the receiving MCA is known as a channel. The sending
MCA takes messages from a transmission queue and sends them down a channel
to the receiving MCA. The receiving MCA receives the messages and puts them on
to the destination queues.

In MQSeries for OS/390, the sending and receiving MCAs all run inside the
channel initiator (the channel initiator is also known as the mover). The channel
initiator runs as an OS/390 address space under the control of the queue manager.
There can only be a single channel initiator connected to a queue manager and it is
run inside the same OS/390 image as the queue manager. There can be thousands
of MCA processes running inside the channel initiator concurrently.

Figure 2 shows two queue managers within a sysplex. Each queue manager has a
channel initiator and a local queue. Messages sent by queue managers on AIX®

and Windows NT® are placed on the local queue, from where it is retrieved by an
application. Reply messages are returned by a similar route.

SYSPLEX

OS/390 1

Application

QM1

Channel
initiator

LQ1

OS/390 2

Application

QM2

Channel
initiator

LQ2

MQ
Windows NT

MQ
AIX

Figure 2. Communication between queue managers

Introduction

Chapter 1. Introduction 7

The channel initiator also contains other processes concerned with the management
of the channels. These include:

Listeners
These listen for inbound channel requests on a communications subsystem
such as TCP, and start a named MCA when an inbound request is
received.

Supervisor
This manages the channel initiator address space, for example it is
responsible for restarting channels after a failure.

Name server
This is used to resolve TCP names into addresses.

Distributed queuing is described in the MQSeries Intercommunication manual.

Queue manager clusters
You can group queue managers in a cluster. Queue managers in a cluster can make
the queues that they host available to every other queue manager in the cluster.
Any queue manager can send a message to any other queue manager in the same
cluster without the need for many of the object definitions required for standard
distributed queuing. Each queue manager in the cluster has a single transmission
queue from which it can transmit messages to any other queue manager in the
cluster.

Clusters are described in the MQSeries Queue Manager Clusters manual.

Introduction

8 Concepts and Planning Guide

Part 2. MQSeries for OS/390 concepts

Chapter 2. Shared queues and queue-sharing
groups. 11
What is a shared queue? 11

Messages can be accessed by any queue manager 11
Queue definition shared by all queue managers 12

What is a queue-sharing group? 13
Where are shared queue messages held?. 15

The Coupling Facility 15
Advantages of using shared queues 16

High availability. 16
Peer recovery 17

Distributed queuing and queue-sharing groups . . 18
Shared channels 18

Shared inbound channels 19
Shared outbound channels 19
Shared channel summary 20
Shared channel status 20

Intra-group queuing 20
Clusters and queue-sharing groups 21

Application programming with shared queues. . . 22
Serializing your applications. 22
Applications that are not suitable for use with
shared queues 23
Deciding whether to share non-application
queues 24
Migrating your existing applications to use
shared queues 24

Where to find more information 26

Chapter 3. Storage management 27
Page sets 27
Storage classes 28

How storage classes work 28
Buffers and buffer pools 30
Where to find more information 31

Chapter 4. Logging 33
What logs are. 33

Archiving 33
Dual logging 34
Log data 34
Unit-of-recovery log records 34
Checkpoint records 35
Page set control records 35

How the log is structured 35
Physical and logical log records 35

How the logs are written 36
When the active log is written 36
When the archive log is written 37

Triggering an off-load 37
The off-load process 37
Interruptions and errors while off-loading . . 38
Messages during off-load 38

MQSeries and SMS 38
What the bootstrap data set is for 39

Archive log data sets and BSDS copies 40

Where to find more information 40

Chapter 5. Defining your system 41
Setting system parameters 41
Defining system objects 42

System default objects 42
System command objects 42
System administration objects 43
Channel queues 43
Cluster queues 43
Queue-sharing group queues 43
Storage classes 44
Dead-letter queue 44
Default transmission queue 44

Sample definitions supplied with MQSeries . . . 45
The CSQINP1 sample 45
CSQ4INSG system object sample 45
CSQ4INSS system object sample 45
CSQ4INSX system object sample 46
CSQ4INYC object sample. 46
CSQ4INYD object sample. 46
CSQ4INYG object sample. 47

Default transmission queue 47
CICS adapter objects 47

CSQ4DISP display sample 47
CSQ4DISQ distributed queuing using CICS
sample 48
CSQ4INPX sample 48
CSQ4IVPQ and CSQ4IVPG samples 48

Where to find more information 48

Chapter 6. Recovery and restart 49
How changes are made to data 49

Units of recovery 49
Backing out work 50

How consistency is maintained 51
Consistency with CICS or IMS 51

Illustration of the two-phase commit process 52
How consistency is maintained after an abnormal
termination 53

What happens during termination 54
Normal termination 54
Abnormal termination 54

What happens during restart and recovery 55
Rebuilding queue indexes 55

How in-doubt units of recovery are resolved . . . 56
How in-doubt units of recovery are resolved
from CICS 56
How in-doubt units of recovery are resolved
from IMS 57
How in-doubt units of recovery are resolved
from RRS 58

Shared queue recovery 59
Transactional recovery 59
Peer recovery 59
Shared queue definitions 60

© Copyright IBM Corp. 1993, 2000 9

Coupling Facility failure 60
Where to find more information 60

Chapter 7. Security 61
Why you need to protect MQSeries resources . . . 61

If you do nothing 61
Security controls and options 62

Subsystem security 62
Queue manager or queue-sharing group level
checking 62
Controlling the number of user IDs checked . . 63

Resources you can protect 64
Connection security 64
API-resource security 64

Queue security 64
Process security 65
Namelist security 65
Alternate user security. 65
Context security 65

Command security 66
Command resource security 67

Channel security. 67
Where to find more information 67

Chapter 8. Availability 69
Shared queues 69
Shared channels 70
Using the OS/390 Automatic Restart Manager
(ARM) 71
Using the OS/390 Extended Recovery Facility (XRF) 72
Where to find more information 72

Chapter 9. Creating and managing objects . . . 73
Issuing commands 73

Private and global definitions 73
Manipulating global definitions. 74

Directing commands to different queue managers 75
Administrator commands. 75
System control commands 76
Initialization commands 77

Initialization commands for distributed
queuing 78

The MQSeries for OS/390 utilities 79
The CSQUTIL utility 79
The data conversion exit utility 79
The change log inventory utility 80
The print log map utility 80
The log print utility 80
The queue-sharing group utility 80
The dead-letter queue handler utility 80

Where to find more information 81

Chapter 10. Monitoring and statistics 83
MQSeries trace 83
Events 83
Where to find more information 84

10 Concepts and Planning Guide

Chapter 2. Shared queues and queue-sharing groups

This chapter describes how several queue managers can share the same queues
and the messages on those queues. It discusses the following topics:
v “What is a shared queue?”
v “What is a queue-sharing group?” on page 13
v “Where are shared queue messages held?” on page 15
v “Advantages of using shared queues” on page 16
v “Distributed queuing and queue-sharing groups” on page 18
v “Application programming with shared queues” on page 22
v “Where to find more information” on page 26

What is a shared queue?
A shared queue is a type of local queue. The messages on that queue can be
accessed by one or more queue managers that are in a sysplex. The queue
managers that can access the same set of shared queues form a group called a
queue-sharing group.

Messages can be accessed by any queue manager
A shared queue can be accessed by any queue manager in the queue-sharing
group. This means that you can put a message on to a shared queue on one queue
manager, and get the same message from the queue from a different queue
manager. This provides a rapid mechanism for communication within a
queue-sharing group that does not require channels to be active between queue
managers.

The messages on a shared queue are stored in the OS/390 Coupling Facility.
Figure 3 on page 12 shows three queue managers and a Coupling Facility, forming
a queue-sharing group. All three queue managers can access the shared queue in
the Coupling Facility.

An application can connect to any of the queue managers within the queue-sharing
group. Because all the queue managers in the queue-sharing group can access all
the shared queues, the application does not depend on the availability of a specific
queue manager; any queue manager in the queue-sharing group can service the
queue.

This gives greater availability because all the other queue managers in the
queue-sharing group can continue processing the queue if one of the queue
managers has a problem.

© Copyright IBM Corp. 1993, 2000 11

Queue definition shared by all queue managers
The definition of a shared queue is stored in a DB2 shared database called the
shared repository. Because of this, the queue need only be defined once and then it
can be accessed by all the queue managers in the queue-sharing group. This means
that there are fewer definitions to make.

By contrast, the definition of a non-shared queue is stored on page set zero of the
queue manager that owns the queue (as described in “Page sets” on page 27).

You cannot define a shared queue if a queue with that name has already been
defined on the page sets of the defining queue manager. Likewise, you cannot
define a local version of a queue on the queue manager page sets if a shared queue
with the same name already exists.

Queue-sharing group

Queue
manager

QM1

Queue
manager

QM2

Queue
manager

QM3

Coupling facility

Figure 3. A queue-sharing group

Shared queues and queue-sharing groups

12 Concepts and Planning Guide

What is a queue-sharing group?
The group of queue managers that can access the same shared queues is called a
queue-sharing group. Each member of the queue-sharing group has access to the
same set of shared queues.

Figure 4 illustrates a queue-sharing group that contains two queue managers. Each
queue manager has a channel initiator and its own local page sets and log data
sets.

Each member of the queue-sharing group must also connect to a DB2 system. The
DB2 systems must all be in the same DB2 data-sharing group so that the queue
managers can access the DB2 shared repository used to hold shared object
definitions. These are definitions of any type of MQSeries object (for example,
queues and channels) that are defined once only and can then be used by any
queue manager in the group. These are called global definitions and are described
in “Private and global definitions” on page 73.

A particular data-sharing group can be referenced by more than one queue-sharing
group. You specify the name of the DB2 subsystem and which data-sharing group
a queue manager uses in the MQSeries system parameters at startup.

When a queue manager has joined a queue-sharing group, it has access to the
shared objects defined for that group, and can be used to define new shared
objects within the group. If shared queues are defined within the group, this queue
manager can be used to put messages to and get messages from those shared
queues. Messages held on a shared queue can be retrieved by any queue manager
in the group.

Figure 4. The components of queue managers in a queue-sharing group

Shared queues and queue-sharing groups

Chapter 2. Shared queues and queue-sharing groups 13

You can enter an MQSeries command once, and have it executed on all queue
managers within the queue-sharing group as if it had been entered at each queue
manager individually. The command scope attribute is used for this. This attribute is
described in “Directing commands to different queue managers” on page 75.

When a queue manager runs as a member of a queue-sharing group it must be
possible to distinguish between MQSeries objects defined privately to that queue
manager and MQSeries objects defined globally that are available to all queue
managers in the queue-sharing group. The queue-sharing group disposition attribute
is used for this. This attribute is described in “Private and global definitions” on
page 73.

You can define a single set of security profiles that control access to MQSeries
objects anywhere within the group. This means that the number of profiles you
have to define is greatly reduced.

A queue manager can belong to one queue-sharing group only, and all queue
managers in the group must be in the same sysplex. You specify which
queue-sharing group the queue manager belongs to in the system parameters at
startup.

Shared queues and queue-sharing groups

14 Concepts and Planning Guide

Where are shared queue messages held?
The messages in shared queues are stored on list structures in the OS/390
Coupling Facility. They can be accessed by many queue managers in the same
sysplex. All queue managers also maintain their own logs and page sets (as shown
in Figure 4 on page 13) to use non-shared local queues, and store definitions of
private objects on page set zero. Messages that are put on to shared queues are not
stored on page sets.

Messages on shared queues are not logged in the queue manager log, so persistent
messages are not allowed. You should use non-volatile storage to minimize the risk
of data loss in the event of a Coupling Facility failure.

The Coupling Facility
The messages held on shared queues are actually stored inside a Coupling Facility.
The Coupling Facility lies outside any of the MVS™ images in the Sysplex and is
typically configured to run on a different power supply. The Coupling Facility is
therefore resilient to software failures and can be configured so that it is resilient to
hardware failures or power-outages. This means that messages stored in the
Coupling Facility are highly available.

MQSeries uses Coupling Facility list structures to store messages. This means that
the maximum length for messages on a shared queue is 63 KB.

Each coupling facility list structure used by MQSeries is dedicated to a specific
queue-sharing group, but a Coupling Facility can hold structures for more than
one queue-sharing group. Queue managers in different queue-sharing groups
cannot share data. Up to 32 queue managers in a queue-sharing group can connect
to a Coupling Facility list structure at the same time.

A single Coupling Facility list structure can contain up to 512 shared queues. The
amount of message data is limited by the size of the list structure. The size of the
list structure is restricted by the following factors:
v It must lie within a single Coupling Facility.
v It might share the available Coupling Facility storage with other structures for

MQSeries and other products.

Shared queues and queue-sharing groups

Chapter 2. Shared queues and queue-sharing groups 15

Advantages of using shared queues
The shared queue architecture, where cloned servers pull work from a single
shared queue, has some very useful properties:
v It is scalable, by adding new instances of the server application, or even adding

a new OS/390 image with a queue manager (in the queue-sharing group) and a
copy of the application.

v It is highly available.
v It naturally performs ‘pull’ workload balancing, based on the available

processing capacity of each queue manager in the queue-sharing group.

High availability
The following examples illustrate how a shared queue can be used to increase
application availability.

Consider an MQSeries scenario where client applications running in the network
want to make requests of server applications running on OS/390. The client
application constructs a request message and places it on a request queue. The
client then waits for a reply from the server, sent to the reply-to queue named in
the message descriptor of the request message.

MQSeries manages the transportation of the request message from the client
machine to the server’s input queue on OS/390 and of the server’s response back
to the client. By defining the server’s input queue as a shared queue, any messages
put to the queue can be retrieved on any queue manager in the queue-sharing
group. This means that you can configure a queue manager on each OS/390 image
in the sysplex and, by connecting them all to the same queue-sharing group, any
one of them can access messages on the server’s input queue.

Messages on the server’s input queue will still be available, even if one of the
queue managers terminates abnormally or has to be stopped for administrative
reasons. In fact, an entire OS/390 image can be taken off-line and the messages
will still be available.

To take advantage of this availability of messages on a shared queue, run an
instance of the server application on each OS/390 image in the sysplex to provide
higher server application capacity and availability, as shown in Figure 5 on page 17.

One instance of the server application retrieves a request message from the shared
queue and, based on the content, performs its processing, producing a result to be
sent back to the client as an MQSeries message. The response message is destined
for the reply-to queue and reply-to queue manager named in the message
descriptor of the request message.

There are a number of options that can be used to configure the return path; these
are considered in “Distributed queuing and queue-sharing groups” on page 18.

Shared queues and queue-sharing groups

16 Concepts and Planning Guide

Peer recovery
To further enhance the availability of messages in a queue-sharing group,
MQSeries detects if another queue manager in the group disconnects from the
Coupling Facility abnormally and completes units of work for that queue manager
that are still pending, where possible. This is known as peer recovery.

Suppose a queue manager terminates abnormally at a point where an application
has retrieved a request message from a queue in syncpoint, but has not yet put the
response message or committed the unit of work. Another queue manager in the
queue-sharing group detects the failure, and backs out the in-flight units of work
being performed on the failed queue manager. This means that the request
message is put back on to the request queue and is available for one of the other
server instances to process, without waiting for the failed queue manager to
restart.

If MQSeries is not able to resolve a unit of work automatically, you can resolve the
shared portion manually to enable another queue manager in the queue-sharing
group to continue processing that work.

Figure 5. Multiple instances of an application servicing a shared queue

Shared queues and queue-sharing groups

Chapter 2. Shared queues and queue-sharing groups 17

Distributed queuing and queue-sharing groups
To complement the high availability of messages on shared queues, the distributed
queuing component of MQSeries has additional functions to provide the following:
v Higher availability to the network.
v Increased capacity for inbound network connections to the queue-sharing group.

Figure 6 illustrates distributed queuing and queue-sharing groups. It shows two
queue managers within a sysplex, both of which belong to the same queue-sharing
group. They can both access shared queue SQ1. Queue managers in the network
(on AIX and Windows NT for example) can put messages onto this queue through
the channel initiator of either queue manager. Cloned applications on both queue
managers service the queue.

Shared channels
A number of networking products provide a mechanism to hide server failures
from the network, or to balance inbound network requests across a set of eligible
servers. These include:
v VTAM® generic resources
v TCP/IP Domain Name System (DNS)

The channel initiator takes advantage of these products to exploit the capabilities
of shared queues.

OS/390 1

Application

QM1

Channel
initiator

LQ1

SYSPLEX

SQ1

CF

OS/390 2

Application

QM2

Channel
initiator

LQ2

MQ
Windows NT

MQ
AIX

Figure 6. Distributed queuing and queue-sharing groups

Shared queues and queue-sharing groups

18 Concepts and Planning Guide

Shared inbound channels
Each channel initiator in the queue-sharing group starts an additional listener task
to listen on a generic port. This generic port is made available to the network
through one of the technologies mentioned above. This means that an inbound
network attach request for the generic port can be dispatched to any one of the
listeners in the queue-sharing group that are listening on the generic port.

A channel can only be started on the channel initiator to which the inbound attach
is directed if the channel initiator has access to a channel definition for a channel
with that name. A channel definition can be defined to be private to a queue
manager or stored on the shared repository and available anywhere (a global
definition). This means that a channel definition can be made available on any
channel initiator in the queue-sharing group by defining it as a global definition.

There is an additional difference when starting a channel through the generic port;
channel synchronization is with the queue-sharing group and not with an
individual queue manager. For example, consider a client starting a channel
through the generic port. When the channel first starts, it might start on queue
manager QM1 and messages will flow. If the channel stops and is restarted on
queue manager QM2, information about the number of messages that have flowed
will still be correct because the synchronization is with the queue-sharing group.

An inbound channel started through the generic port can be used to put messages
to any queue. The client does not know whether the target queue is shared or not.
If the target queue is a shared queue, the client connects through any available
channel initiator in a load-balanced fashion and the messages are put to the shared
queue. If the target queue is not a shared queue, the messages might be put on any
queue in the queue-sharing group with that name (the environment is one of
replicated local queues), and the name of the queue determines the function,
regardless of the hosting queue manager.

Shared outbound channels
An outbound channel is considered to be a shared channel if it is taking messages
from a shared transmission queue. If it is shared, it holds synchronization
information at queue-sharing group level. This means that the channel can be
restarted on a different queue manager and channel initiator instance within the
queue-sharing group if the communications subsystem, channel initiator, or queue
manager fails. Restarting failed channels in this way is a feature of shared channels
called peer channel recovery.

Workload balancing: An outbound shared channel is eligible for starting on any
channel initiator within the queue-sharing group, provided that you have not
specified that you want it to be started on a particular channel initiator. The
channel initiator selected by MQSeries is determined using the following criteria:
v Is the communications subsystem required currently available to the channel

initiator?
v Is a DB2 connection available to the channel initiator?
v Which channel initiator has the lowest current workload? The workload includes

channels that are active and retrying.

Shared queues and queue-sharing groups

Chapter 2. Shared queues and queue-sharing groups 19

Shared channel summary
Shared channels differ from non-shared channels in the following ways:

Private channel
Function the same as for previous releases of MQSeries.
v Outbound channel uses a local transmission queue.
v Inbound channel started through a local port.
v Synchronization information held in SYSTEM.CHANNEL.SYNCQ queue.

Shared Channel
Workload balanced with high availability.
v Outbound channel uses a shared transmission queue.
v Inbound channel started through a generic port.
v Synchronization information held in SYSTEM.QSG.CHANNEL.SYNCQ

queue.
v Shared outbound channels have a maximum message length of 63 KB,

and can only be used for nonpersistent messages.

You specify whether a channel is private or shared when you start the channel. A
shared channel can be started by triggering in the same way as a private channel.
However, when a shared channel is started, MQSeries performs workload
balancing and starts the channel on the most appropriate channel initiator within
the queue-sharing group. (If required, you can specify that a shared channel is to
be started on a particular channel initiator.)

Shared channel status
The channel initiators in a queue-sharing group maintain a shared channel-status
table in DB2. This records which channels are active on which channel initiators.
The shared channel-status table is used if there is a channel initiator or
communications system failure. It indicates which channels need to be restarted on
a different channel initiator in the queue-sharing group.

Intra-group queuing
You can perform fast message transfer between queue managers in a
queue-sharing group without defining channels. This uses a system queue called
the SYSTEM.QSG.TRANSMIT.QUEUE which is a shared transmission queue. Each
queue manager in the queue-sharing group starts a task called the intra-group
queuing agent, which waits for messages to arrive on this queue that are destined
for their queue manager. When such a message is detected, it is removed from the
queue and placed on the correct destination queue.

Standard name resolution rules are used but, if intra-group queuing is enabled and
the target queue manager is within the queue-sharing group, the
SYSTEM.QSG.TRANSMIT.QUEUE is used to transfer the message to the correct
destination queue manager instead of using a transmission queue and channel.

Intra-group queuing is enabled through a queue manager attribute at startup. It
can only be used to move nonpersistent messages with a message length of less
than 63 KB, including the transmission-queue header (63 KB is the maximum
message length for shared queues). Intra-group queuing moves messages outside
syncpoint so the message is put to the dead-letter queue if there is a problem
delivering it to the target queue. (If you have not defined a dead-letter queue, the
message is discarded.)

An inbound shared channel that receives a message destined for a queue on a
different queue manager in the queue-sharing group can use intra-group queuing
to ‘hop’ the message to the correct destination.

Shared queues and queue-sharing groups

20 Concepts and Planning Guide

Clusters and queue-sharing groups
You can make your shared queues available to a cluster in a single definition. To
do this you specify the name of the cluster when you define the shared queue.

Users in the network see the shared queue as being hosted by each queue manager
within the queue-sharing group (the shared queue is not advertised as being
hosted by the queue-sharing group). Clients can start sessions with any members
of the queue-sharing group to put messages to the same shared queue.

Figure 7 shows how members of a cluster can access a shared queue through any
member of the queue-sharing group.

Figure 7. A queue-sharing group as part of a cluster

Shared queues and queue-sharing groups

Chapter 2. Shared queues and queue-sharing groups 21

Application programming with shared queues
This section discusses some of the factors you need to take into account when
designing new applications that will use shared queues, and when migrating
existing applications to the shared-queue environment.

Serializing your applications
Certain types of applications might have to ensure that messages are retrieved
from a queue in exactly the same order as they arrived on the queue. For example,
if MQSeries is being used to shadow database updates on to a remote system, a
message describing the update to a record must be processed after a message
describing the insert of that record. In a local queuing environment, this is often
achieved by the application that is getting the messages opening the queue with
the MQOO_INPUT_EXCLUSIVE option, thus preventing any other getting
application from processing the queue at the same time.

MQSeries allows applications to open shared queues exclusively in the same way.
However, if the application is working from a partition of a queue (for example, all
database updates are on the same queue, but those for table A have a correlation
identifier of A, and those for table B a correlation identifier of B), and applications
want to get messages for table A updates and table B updates concurrently, the
simple mechanism of opening the queue exclusively is not possible.

If this type of application is to take advantage of the high availability of shared
queues, you might decide that another instance of the application that accesses the
same shared queues, running on a secondary queue manager, will take over if the
primary getting application or queue manager fails.

If the primary queue manager fails, two things happen:
v Shared queue peer recovery ensures that any incomplete updates from the

primary application are completed or backed out.
v The secondary application takes over processing the queue.

The secondary application might start before all the incomplete units of work have
been dealt with, which could lead to the secondary application retrieving the
messages out of sequence. To solve this type of problem, the application can
choose to be a serialized application.

A serialized application uses the MQCONNX call to connect to the queue
manager, specifying a connection tag when it connects that is unique to that
application. Any units of work performed by the application are marked with the
connection tag. MQSeries ensures that units of work within the queue-sharing
group with the same connection tag are serialized (according to the serialization
options on the MQCONNX call).

This means that, if the primary application uses the MQCONNX call with a
connection tag of Database shadow retriever, and the secondary takeover
application attempts to use the MQCONNX call with an identical connection tag,
the secondary application will not be able to connect to the second MQSeries until
any outstanding primary units of work have been completed, in this case by peer
recovery.

Shared queues and queue-sharing groups

22 Concepts and Planning Guide

You should consider using the serialized application technique for applications that
depend on the exact sequence of messages on a queue. In particular:
v Applications that must not restart after an application or queue manager failure

until all commit and back-out operations for the previous execution of the
application are complete.
In this case, the serialized application technique is only applicable if the
application works in syncpoint.

v Applications that must not start while another instance of the same application
is already running.
In this case, the serialized application technique is only required if the
application cannot open the queue for exclusive input.

Note: MQSeries only guarantees to preserve the sequence of messages when
certain criteria are met. These are described in the description of the
MQGET call in the MQSeries Application Programming Reference.

Applications that are not suitable for use with shared queues
Some features of MQSeries are not supported when you are using shared queues,
so applications that use these features are not suitable for the shared queue
environment. You should consider the following points when designing your
shared-queue applications:
v Persistent messages are not supported. However, the nonpersistent messages on

shared queues are stored in the coupling facility, so they are not lost if an
individual queue manager in the queue-sharing group fails. The nonpersistent
messages on shared queues are lost only if the Coupling Facility fails.

v Messages on shared queues cannot be greater than 63 KB in size. Because
Coupling Facility storage is limited, you must also consider the number of
messages to be generated by the application to ensure that the messages will not
fill the queue. However, remember that you can monitor the queue and start
more versions of the application on different queue managers to service it if this
is a problem.

v Queue indexing is limited for shared queues. If you want to use the message
identifier or correlation identifier to select the message you want to get from the
queue, the queue must have the correct index defined. If you do not define a
queue index, applications can only get the next available message.

v You cannot use temporary dynamic queues as shared queues. You can use
permanent dynamic queues however. The models for shared dynamic queues
have a DEFTYPE of SHAREDYN (shared dynamic) although they are created
and destroyed in the same way as PERMDYN (permanent dynamic) queues.

Shared queues and queue-sharing groups

Chapter 2. Shared queues and queue-sharing groups 23

Deciding whether to share non-application queues
There are queues other than application queues that you might want to consider
sharing:

Initiation queues

If you define a shared initiation queue, you do not need to have a trigger
monitor running on every queue manager in the queue-sharing group, as
long as there is at least one trigger monitor running. (You can also use a
shared initiation queue even if there is a trigger monitor running on each
queue manager in the queue-sharing group.)

If you have a shared application queue and use the trigger type of EVERY
(or a trigger type of FIRST with a small trigger interval, which behaves like
a trigger type of EVERY) your initiation queue should always be a shared
queue. For more information about when to use a shared initiation queue,
see Table 1 on page 25.

Dead-letter queue
You should not define your dead-letter queue as a shared queue. This is
because shared queues cannot hold persistent messages, or messages with
a size greater than 63 KB. If you use a shared dead-letter queue, any
persistent messages (or nonpersistent messages longer than 63 KB) that
cannot be delivered to their destination queues will be discarded.

SYSTEM.* queues
You can define the SYSTEM.ADMIN.* queues used to hold event messages
as shared queues. This can be useful to check load balancing if an
exception occurs. Each event message created by MQSeries contains a
correlation identifier indicating which queue manager produced it.

You must define the SYSTEM.QSG.* queues used for shared channels and
intra-group queuing as shared queues.

You can also change the definition of the
SYSTEM.DEFAULT.LOCAL.QUEUE to be shared, or define your own
default shared queue definition. This is described in “Defining system
objects” on page 42.

You cannot define any of the other SYSTEM.* queues as shared queues.

Migrating your existing applications to use shared queues
Migrating your existing queues to shared queues is described in the MQSeries for
OS/390 System Administration Guide.

When you are migrating your existing applications, you should consider the
following things, which might work in a slightly differently way in the shared
queue environment.

Reason Codes
When you are migrating your existing applications to use shared queues,
remember to check for the new reason codes that can be issued.

MQINQ
When you use the MQINQ call to display information about a shared
queue, the values of the number of MQOPEN calls that have the queue
open for input and output relate only to the queue manager that issued the
call. No information is produced about other queue managers in the
queue-sharing group that have the queue open.

Shared queues and queue-sharing groups

24 Concepts and Planning Guide

Triggering
If you are using a shared application queue, triggering works on
committed messages only (on a non-shared application queue, triggering
works on all messages).

If you use triggering to start applications, you might want to use a shared
initiation queue. Table 1 describes what you need to consider when
deciding which type of initiation queue to use.

Table 1. When to use a shared-initiation queue

Non-shared application
queue

Shared application queue

Non-shared
initiation queue

As for previous releases. If you are using trigger type of FIRST or
DEPTH, you can use a non-shared initiation
queue with a shared application queue.
There is the possibility of extra trigger
messages being generated, but this setup is
good for triggering long-running
applications (like the CICS bridge) and
provides high availability.

For trigger type FIRST or DEPTH, a trigger
message will trigger an instance of the
application on every queue manager that is
running a trigger monitor and that does not
already have the application queue open for
input.

Shared initiation
queue

You should not use a
shared initiation queue
with a non-shared
application queue.

If you have a shared application queue that
has trigger type EVERY, you should use a
shared initiation queue or you will lose
trigger messages.

For trigger type FIRST or DEPTH, one
trigger message is generated by each queue
manager that has the named initiation queue
open for input. If the initiation queue is
defined as a local queue, one trigger
message is available to any trigger monitors
running on that queue manager against the
queue.

Shared queues and queue-sharing groups

Chapter 2. Shared queues and queue-sharing groups 25

Where to find more information
You can find more information about the topics discussed in this chapter from the
following sources:

Table 2. Where to find more information about shared queues and queue-sharing groups

Topic Where to look

Queue-sharing group recovery “Chapter 6. Recovery and restart” on page 49

Queue-sharing group security “Chapter 7. Security” on page 61

Private and global object definitions
Directing commands to different queue
managers

“Chapter 9. Creating and managing objects”
on page 73

Planning your Coupling Facility
environment

“Defining Coupling Facility resources” on
page 123

Planning your DB2 environment “Planning your DB2 environment” on
page 126

Setting up your shared queues
System parameters

MQSeries for OS/390 System Setup Guide

Utility programs
Migrating queues

MQSeries for OS/390 System Administration
Guide

Console messages MQSeries for OS/390 Messages and Codes

MQSeries commands MQSeries MQSC Command Reference

MQSeries clusters MQSeries Queue Manager Clusters

MQSeries distributed queuing
Channel name resolution

MQSeries Intercommunication

Writing applications MQSeries Application Programming Guide

MQCONNX call MQSeries Application Programming Reference

Shared queues and queue-sharing groups

26 Concepts and Planning Guide

Chapter 3. Storage management

This chapter discusses how MQSeries for OS/390 manages storage. It contains the
following sections:
v “Page sets”
v “Storage classes” on page 28
v “Buffers and buffer pools” on page 30
v “Where to find more information” on page 31

Page sets
A page set is a linear VSAM data set that has been specially formatted to be used
by MQSeries. Page sets are used to store most messages and object definitions.

The exceptions to this are global definitions, which are stored in a shared
repository on DB2, and the messages on shared queues. These are not stored on
the queue manager page sets. Shared queues are discussed in “Chapter 2. Shared
queues and queue-sharing groups” on page 11, and global definitions are discussed
in “Private and global definitions” on page 73.

MQSeries page sets can be up to 4 GB in size. Each page set is identified by a page
set identifier (PSID), an integer in the range 00 through 99. Each queue manager
must have its own page sets.

MQSeries uses page set zero (PSID=00) to store object definitions and other
important information relevant to the queue manager subsystem. For normal
operation of MQSeries it is essential that page set zero does not become full, so it
should not be used to store messages. To improve the performance of your system,
you should also separate short lived messages from long lived messages by placing
them on different page sets.

Page sets must be formatted so MQSeries provides a FORMAT utility for this, This
is described in the MQSeries for OS/390 System Administration Guide. Page sets must
also be defined to the MQSeries subsystem, this is described in the MQSeries for
OS/390 System Setup Guide.

If you define secondary extents for your page sets, MQSeries for OS/390 expands a
page set dynamically if it becomes full. MQSeries continues to expand the page set
if required until 123 logical extents exist, provided that there is sufficient disk
storage space available. The extents can span volumes if the LDS is so defined,
however, MQSeries cannot expand the page sets beyond 4 GB.

You cannot use page sets from one MQSeries subsystem on a different MQSeries
subsystem, or change the subsystem name. If you want to transfer the data from
one subsystem to another, you must unload all the objects and messages from the
first subsystem and reload them onto another.

© Copyright IBM Corp. 1993, 2000 27

Storage classes
A storage class maps one or more queues to a page set. This means that messages
for that queue are stored on that page set. Shared queues do not use storage
classes to obtain a page set mapping because the messages on them are not stored
on page sets.

Storage classes allow you to control where non-shared message data is stored for
administrative, data set space and load management, or application isolation
purposes. Storage classes can also be used to define the XCF group and member
name of an IMS region if you are using the IMS bridge (described in “Chapter 12.
MQSeries and IMS” on page 99).

How storage classes work
v You define a storage class, using the DEFINE STGCLASS command, specifying a

page set identifier (PSID).
v When you define a queue, you can specify a storage class in the STGCLASS

attribute.

In the following example, the local queue QE5 is mapped to page set 21 through
storage class ARC2.

This means that messages that are put on the queue QE5 are stored on page set 21
(if they stay on the queue long enough to be written to DASD).

DEFINE STGCLASS(ARC2) PSID(21)
DEFINE QLOCAL(QE5) STGCLASS(ARC2)

ARC1 ARC1 MAXI

QE1 QE2 QE3

Page set 05

ARC2 ARC2

QE4 QE5

Page set 21

Queue

message 1
message 2
. . .
message n

message 1
message 2
. . .
message n

message 1
message 2
. . .
message n

message 1
message 2
. . .
message n

message 1
message 2
. . .
message n

Storage
Class

Figure 8. Mapping queues to page sets through storage classes

Storage management

28 Concepts and Planning Guide

More than one queue can use the same storage class, and you can define as many
storage classes as you like. For example, you can extend the previous example to
include more storage class and queue definitions, as follows:

In Figure 8 on page 28, both storage classes ARC1 and MAXI are associated with
page set 05. Therefore, the queues QE1, QE2, and QE3 are mapped to page set 05.
Similarly, storage class ARC2 associates queues QE4 and QE5 with page set 21.

If you define a queue without specifying a storage class, MQSeries uses a default
storage class.

If a message is put on a queue that names a non-existent storage class, the
application will receive an error. You must alter the queue definition to give it an
existing storage class name, or create the storage class named by the queue.

A storage class can only be changed when:
v All queues that use this storage class are empty, and have no uncommitted

activity.
v All queues that use this storage class are closed.

DEFINE STGCLASS(ARC1) PSID(05)
DEFINE STGCLASS(ARC2) PSID(21)
DEFINE STGCLASS(MAXI) PSID(05)
DEFINE QLOCAL(QE1) STGCLASS(ARC1) ...
DEFINE QLOCAL(QE2) STGCLASS(ARC1) ...
DEFINE QLOCAL(QE3) STGCLASS(MAXI) ...
DEFINE QLOCAL(QE4) STGCLASS(ARC2) ...
DEFINE QLOCAL(QE5) STGCLASS(ARC2) ...

Storage management

Chapter 3. Storage management 29

Buffers and buffer pools
For efficiency, MQSeries uses a form of caching whereby messages (and object
definitions) are stored temporarily in buffers before being stored in page sets on
DASD. Short-lived messages, that is, messages that are retrieved from a queue
shortly after they are received, might only ever be stored in the buffers. However,
this is all transparent to the user because the buffers are controlled by a buffer
manager, which is a component of MQSeries.

The buffers are organized into buffer pools. You can define up to four buffer pools
(0 through 3) for each MQSeries subsystem; you are recommended to use four
buffer pools. Each buffer is 4 KB long. The maximum number of buffers is
determined by the amount of storage available in the MQSeries address space,
although you should not use more than about 70% of the space for buffers.
Usually, the more buffers you have, the more efficient the buffering and the better
the performance of the MQSeries subsystem.

Figure 9 shows the relationship between messages, buffers, buffer pools, and page
sets. A buffer pool is associated with one or more page sets; each page set is
associated with a single buffer pool.

You specify the number of buffers in a pool with the DEFINE BUFFPOOL
command. This command is described in the MQSeries MQSC Command Reference
manual.

For performance reasons, messages and object definitions should not be in the
same buffer pool. You are recommended therefore to use one buffer pool (say
number zero) exclusively for page set zero, where the object definitions are kept.
Similarly, short-lived messages and long-lived messages should be kept in different
buffer pools and therefore on different page sets, and in different queues.

<descriptor> <application data>

Buffers

MQM message

Physically, messages
are stored
temporarily in
buffers before
they are stored in
page sets on DASD.

Each 4KB buffer
belongs to a buffer
pool.

A page set is a
specially formatted
VSAM data set.

Each page set is
associated with a
buffer pool.

Page set X

message 1...
message 2...
and so on...

Page set Y

message 3...
message 4...
and so on...

Buffer
pool

Figure 9. Buffers, buffer pools, and page sets

Storage management

30 Concepts and Planning Guide

Where to find more information
You can find more information about the topics discussed in this chapter from the
following sources:

Table 3. Where to find more information about storage management

Topic Where to look

How much storage you need “Chapter 14. Planning your storage
requirements” on page 107

How large to make your page sets
and buffer pools

“Chapter 15. Planning your page sets and
buffer pools” on page 113

Defining page sets MQSeries for OS/390 System Setup Guide

Formatting page sets
Utility programs

MQSeries for OS/390 System Administration
Guide

Console messages MQSeries for OS/390 Messages and Codes

MQSeries commands MQSeries MQSC Command Reference

Storage management

Chapter 3. Storage management 31

Storage management

32 Concepts and Planning Guide

Chapter 4. Logging

MQSeries maintains logs of data changes and significant events as they occur. The
bootstrap data set (BSDS) stores information about the data sets that contain the
logs.

This chapter contains the following sections:
v “What logs are”
v “How the log is structured” on page 35
v “How the logs are written” on page 36
v “What the bootstrap data set is for” on page 39
v “Where to find more information” on page 40

The log does not contain information for statistics, traces, or performance
evaluation. The statistical and monitoring information that MQSeries collects is
discussed in “Chapter 10. Monitoring and statistics” on page 83.

What logs are
MQSeries records all significant events as they occur in an active log. The log
contains the information needed to recover:
v Persistent messages
v MQSeries objects, such as queues
v The MQSeries subsystem

The log does not contain information about messages that are held on shared
queues (these are discussed in “Chapter 2. Shared queues and queue-sharing
groups” on page 11).

Archiving
Because the active log is finite, MQSeries copies the contents of each log data set
periodically to an archive log, which is normally a data set on a direct access
storage device (DASD) or a magnetic tape. If there is a subsystem or transaction
failure, MQSeries uses the active log and, if necessary, the archive log for recovery.

The archive log can contain up to 1000 sequential data sets. Each data set can be
cataloged using the OS/390 integrated catalog facility (ICF).

Archiving is an essential component of MQSeries recovery. If a unit of recovery is a
long-running one, it is possible that log records within that unit of recovery will be
found in the archive log. In this case, recovery will require data from the archive
log. However, if archiving is switched off, the active log with new log records will
wrap, overwriting earlier log records. This means that MQSeries might not be able
to back out the unit of recovery and messages might be lost. MQSeries then
terminates abnormally.

Therefore, in a production environment, you should never switch archiving off. If
you do, you run the risk of losing data after a system or transaction failure. Only if
you are running in a test environment can you consider switching archiving off. If
you need to do this, use the CSQ6LOGP macro, which is described in the MQSeries
for OS/390 System Setup Guide.

© Copyright IBM Corp. 1993, 2000 33

In order to help prevent problems with unplanned long-running units of work,
MQSeries issues a message (CSQJ160I or CSQJ161I) if a long-running unit of work
is detected during active log offload.

Dual logging
You can configure MQSeries to run with either single logging or dual logging. With
single logging, log records are written once to an active log data set. With dual
logging, each log record is written to two different active log data sets. Dual
logging minimizes the likelihood of data loss problems during restart. If possible,
the two log data sets should be on separate volumes. This reduces the risk of them
both being lost if one of the volumes is corrupted or destroyed. If both copies of
the log are lost, the probability of data loss is high.

Note: You should always use dual logging and dual BSDSs rather than dual
writing to DASD.

Single logging gives you 2 through 53 active log data sets, whereas dual logging
gives you 4 through 106. Each active log data set is a single-volume, single-extent
VSAM linear data set (LDS).

Although the minimum number of log data sets required is two, in practice you
should have at least three, and on a busy system you might need more. This is to
allow time for each log data set to be copied to archive before it is reused in the
active log cycle.

Log data
The log can contain up to 280 million million (2.8*1014) bytes. Each byte can be
addressed by its offset from the beginning of the log, and that offset is known as
its relative byte address (RBA).

The log is made up of log records, each of which is a set of log data treated as a
single unit. A log record is identified by the RBA of the first byte of its header; that
RBA is called the relative byte address of the record. The RBA uniquely identifies a
record that starts at a particular point in the log.

Each log record has a header that gives its type, the MQSeries subcomponent that
made the record, and, for unit of recovery records, a unit of recovery identifier.

There are three types of log record, described under these headings:
v “Unit-of-recovery log records”
v “Checkpoint records” on page 35
v “Page set control records” on page 35

Unit-of-recovery log records
Most of the log records describe changes to MQSeries queues. All such changes are
made within units of recovery.

MQSeries uses special logging techniques involving undo/redo and compensating log
records to reduce restart times and improve system availability.

One effect of this is that the restart time is bounded. If a failure occurs during a
restart so that MQSeries has to be restarted a second time, all the recovery activity

Logging

34 Concepts and Planning Guide

that completed to the point of failure in the first restart does not need to be
re-applied during a second restart. This means that successive restarts do not take
progressively longer times to complete.

Checkpoint records
To reduce restart time, MQSeries takes periodic checkpoints during normal
operation. These occur:
v When a predefined number of log records has been written. This number is

defined by the checkpoint frequency operand called LOGLOAD of the system
parameter macro CSQ6SYSP, described in the MQSeries for OS/390 System Setup
Guide.

v At the end of a successful restart.
v At normal termination.
v Whenever MQSeries switches to the next active log data set in the cycle.

At the time a checkpoint is taken, MQSeries issues the DISPLAY THREAD
command (described in the MQSeries MQSC Command Reference) internally so that
a list of threads currently in doubt is written to the OS/390 console log.

Page set control records
These records register the page sets known to the MQSeries subsystem at each
checkpoint, and record information about the log ranges required to perform
media recovery of the page set at the time of the checkpoint.

How the log is structured
Each active log data set must be a VSAM linear data set (LDS). The physical
output unit written to the active log data set is a 4 KB control interval (CI). Each
CI contains one VSAM record.

Physical and logical log records
One VSAM CI is a physical record. The information to be logged at a particular
time forms a logical record, whose length varies independently of the space
available in the CI. So one physical record might contain:
v Several logical records
v One or more logical records and part of another logical record
v Part of one logical record only

The term “log record” refers to the logical record, regardless of how many physical
records are needed to store it.

Logging

Chapter 4. Logging 35

How the logs are written
MQSeries writes each log record to a DASD data set called the active log. When the
active log is full, MQSeries copies its contents to a DASD or tape data set called
the archive log. This process is called off-loading.

Figure 10 illustrates the process of logging. Log records typically go through the
following cycle:
1. MQSeries notes changes to data and significant events in recovery log records.
2. MQSeries processes recovery log records and breaks them into segments, if

necessary.
3. Log records are placed sequentially in output log buffers, which are formatted as

VSAM CIs. Each log record is identified by a relative byte address in the range
0 through 248−1.

4. The CIs are written to a set of predefined DASD active log data sets, which are
used sequentially and recycled.

5. If archiving is active, as each active log data set becomes full, its contents are
automatically off-loaded to a new archive log data set.

When the active log is written
The in-storage log buffers are written to an active log data set whenever any of the
following occur:
v The log buffers become full.
v The write threshold is reached (as specified in the CSQ6LOGP macro).
v Certain significant events occur, such as a commit point.

Register events
in recovery log records

Process the
recovery log records

Output log buffers
hold recovery log records
waiting to be written
but not yet archived

The archived log
holds records that
have been archived

Recovery log records

Log record
processing

Output log buffers

Active log data sets

Archive log data sets

The active log holds
records that have
been written
but not yet archived

1

2

3

4

5

Figure 10. The logging process

Logging

36 Concepts and Planning Guide

When MQSeries is initialized, the active log data sets named in the BSDS are
dynamically allocated for exclusive use by MQSeries and remain allocated
exclusively to MQSeries until MQSeries terminates. To add or replace active log
data sets, you must terminate and restart MQSeries.

When the archive log is written
The process of copying active logs to archive logs is called off-loading. The relation
of off-loading to other logging events is shown schematically in Figure 11.

Triggering an off-load
The off-load of an active log to an archive log can be triggered by several events.
For example:
v Filling an active log data set.
v Using the MQSeries command ARCHIVE LOG.
v An error occurring while writing to an active log data set.

The data set is truncated before the point of failure, and the record that failed to be
written becomes the first record of the new data set. Off-load is triggered for the
truncated data set as it would be for a normal full log data set. If there are dual
active logs, both copies are truncated so that the two copies remain synchronized.

Message CSQJ110E is issued when the last available active log is 75% full and at
5% increments thereafter, stating the percentage of the log’s capacity in use. If all
the active logs become full, MQSeries stops processing until off-loading occurs and
issues this message:
CSQJ111A +CSQ1 OUT OF SPACE IN ACTIVE LOG DATA SETS

The off-load process
When all the active logs become full, the MQSeries subsystem runs an off-load and
halts processing until the off-load has been completed. If the off-load processing
fails when the active logs are full, MQSeries abends.

When an active log is ready to be off-loaded, a request is sent to the OS/390
console operator to mount a tape or prepare a DASD unit. The value of the
ARCWTOR logging option (discussed in the MQSeries for OS/390 System Setup
Guide) determines whether the request is received. If you are using tape for
off-loading, specify ARCWTOR=YES. If the value is YES, the request is preceded
by a WTOR (message number CSQJ008E) telling the operator to prepare an archive
log data set to be allocated.

Write to
archive log

Record
on BSDS

Write to
active log

Triggering
event

Off-load
process

Figure 11. The off-loading process

Logging

Chapter 4. Logging 37

The operator need not respond to this message immediately. However, delaying
the response delays the off-load process. It does not affect MQSeries performance
unless the operator delays the response for so long that MQSeries runs out of
active logs.

The operator can respond by canceling the off-load. In this case, if the allocation is
for the first copy of dual archive data sets, the off-load is merely delayed until the
next active log data set becomes full. If the allocation is for the second copy, the
archive process switches to single copy mode, but for this data set only.

Interruptions and errors while off-loading
A request to stop the queue manager does not take effect until off-loading has
finished. If MQSeries fails while off-loading is in progress, off-load begins again
when MQSeries is restarted. Off-load handling of I/O errors on the logs is
discussed in the MQSeries for OS/390 System Administration Guide.

Messages during off-load
Off-load messages are sent to the OS/390 console by MQSeries and the off-load
process. These messages can be used to find the RBA ranges in the various log
data sets. For an explanation of the off-load messages, see the MQSeries for OS/390
Messages and Codes manual.

MQSeries and SMS
MQSeries parameters enable you to specify Storage Management Subsystem
(MVS/DFP SMS) storage classes when allocating MQSeries archive log data sets
dynamically. MQSeries initiates the archiving of log data sets, but SMS can be used
to perform allocation of the archive data set.

Logging

38 Concepts and Planning Guide

What the bootstrap data set is for
The bootstrap data set (BSDS) is a VSAM key-sequenced data set (KSDS) that holds
information needed by MQSeries. It contains:
v An inventory of all active and archived log data sets known to MQSeries.

MQSeries uses this inventory to:
– Track the active and archived log data sets
– Locate log records so that it can satisfy log read requests during normal

processing
– Locate log records so that it can handle restart processing

MQSeries stores information in the inventory each time an archive log data set is
defined or an active log data set is reused. For active logs, the inventory shows
which are full and which are available for reuse. The inventory holds the relative
byte address (RBA) of each log data set.

v A wrap-around inventory of all recent MQSeries activity. This is needed if
MQSeries has to be restarted.

The BSDS is required if the subsystem has an error and has to be restarted.
MQSeries must have a BSDS; it is not optional. To minimize the likelihood of
problems during a restart, MQSeries can be configured with dual BSDSs, each
recording the same information. This is known as running in dual mode. If possible,
the copies should be on separate volumes. This reduces the risk of them both being
lost if the volume is corrupted or destroyed. You should use dual BSDSs rather
than dual write to DASD.

The BSDS is set up when MQSeries is customized and the inventory can be
managed using the change log inventory utility (CSQJU003). This utility is
discussed in the MQSeries for OS/390 System Administration Guide. It is referenced
by a DD statement in the MQSeries startup procedure.

Normally, MQSeries keeps duplicate copies of the BSDS. If an I/O error occurs, it
deallocates the failing copy and continues with a single BSDS. You can restore dual
mode operation, this is described in the MQSeries for OS/390 System Administration
Guide.

The active logs are first registered in the BSDS when MQSeries is installed. They
cannot be replaced, nor can new ones be added, without terminating and restarting
MQSeries.

Archive log data sets are allocated dynamically. When one is allocated, the data set
name is registered in the BSDS. The list of archive log data sets expands as
archives are added, and wraps when a user-determined number of entries has been
reached. The maximum number of entries is 1000 for single archive logging and
2000 for dual logging.

You can use a tape management system to delete the archive log data sets
(MQSeries does not have an automated method). Therefore, the information about
an archive log data set can be in the BSDS long after the archive log data set has
been deleted by the system administrator.

Conversely, the maximum number of archive log data sets could have been
exceeded, and the data from the BSDS dropped long before the data set has
reached its expiry date.

Logging

Chapter 4. Logging 39

If the system parameter module specifies that archive log data sets are cataloged
when allocated, the BSDS points to the integrated catalog facility (ICF) catalog for
the information needed for later allocations. Otherwise, the BSDS entries for each
volume register the volume serial number and unit information that is needed for
later allocations.

Archive log data sets and BSDS copies
Each time a new archive log data set is created, a copy of the BSDS is also created.
If the archive log is on tape, the BSDS is the first data set on the first output
volume. If the archive log is on DASD, the BSDS is a separate data set.

The data set names of the archive log and the BSDS copy are the same, except that
the lowest-level qualifier of the archive log name begins with A and the BSDS copy
begins with B, for example:
Archive log name

CSQ.ARCHLOG1.E00186.T2336229.A0000001
BSDS copy name

CSQ.ARCHLOG1.E00186.T2336229.B0000001

If there is a read error while copying the BSDS, the copy is not created, message
CSQJ125E is issued, and the off-load to the new archive log data set continues
without the BSDS copy.

Where to find more information
You can find more information about the topics discussed in this chapter from the
following sources:

Table 4. Where to find more information about logging

Topic Where to look

How many logs are required
How large to make the logs

“Chapter 17. Planning your logging environment”
on page 127

Setting up your logs
System parameter macros

MQSeries for OS/390 System Setup Guide

Day to day logging tasks
Resolving problems with logs
Utility programs

MQSeries for OS/390 System Administration Guide

Console messages MQSeries for OS/390 Messages and Codes

MQSeries commands MQSeries MQSC Command Reference

Logging

40 Concepts and Planning Guide

Chapter 5. Defining your system

This chapter discusses the following topics:
v “Setting system parameters”
v “Defining system objects” on page 42
v “Sample definitions supplied with MQSeries” on page 45
v “Where to find more information” on page 48

Setting system parameters
In MQSeries for OS/390, a system parameter module controls the logging,
archiving, tracing, and connection environments that MQSeries uses in its
operation. The system parameters are specified by three assembler macros, as
follows:

CSQ6SYSP
System parameters, including setting the connection and tracing
environment.

CSQ6LOGP
Logging parameters.

CSQ6ARVP
Log archive parameters.

There is also a channel initiator parameter module that controls how the channel
initiator operates; its macro is called CSQ6CHIP.

Default parameter modules are supplied with MQSeries for OS/390. If these do
not contain the values that you want to use, you can create your own parameter
modules using the samples supplied with MQSeries. The samples are
thlqual.SCSQPROC(CSQ4ZPRM) and thlqual.SCSQPROC(CSQ4XPRM).

© Copyright IBM Corp. 1993, 2000 41

Defining system objects
There are several objects that you need to define before you can use MQSeries for
OS/390. These are called the system objects and are described here. Sample
definitions are supplied with MQSeries to help you define these objects. These
samples are described in “Sample definitions supplied with MQSeries” on page 45.

System default objects
The system default objects are used to provide default attributes when you define
an object and do not specify the name of another object to base the definition on.

The names of the default system object definitions begin with the characters
“SYSTEM.DEFAULT” or “SYSTEM.DEF”. For example, the system default local
queue is named SYSTEM.DEFAULT.LOCAL.QUEUE.

These objects define the system defaults for the attributes of these MQSeries
objects:
v Local queues
v Model queues
v Alias queues
v Remote queues
v Processes
v Namelists
v Channels
v Storage classes

Shared queues are a special type of local queue, so when you define a shared
queue, the definition is based on the SYSTEM.DEFAULT.LOCAL.QUEUE. You need
to remember to supply a value for the Coupling Facility structure name because
one is not specified in the default definition. Alternatively, you could define your
own default shared queue definition to use as a basis for shared queues so that
they all inherit the required attributes. Remember that you need to define a shared
queue on one queue manager in the queue-sharing group only.

System command objects
The names of the system command objects begin with the characters
SYSTEM.COMMAND. You must define these objects before the MQSeries
operations and control panels can be used to issue commands to an MQSeries
subsystem.

There are two system-command objects:
1. The system-command input queue is a local queue on which commands are

put before they are processed by the MQSeries command processor. It must be
called SYSTEM.COMMAND.INPUT.

2. SYSTEM.COMMAND.REPLY.MODEL is a model queue that defines the
system-command reply-to queue.

Commands are normally sent using nonpersistent messages so both the
system-command objects should have the DEFPSIST(NO) attribute so that
applications using them (including the supplied applications like the utility
program and the operations and control panels) will get nonpersistent messages by
default. If you have an application that uses persistent messages for commands,
you should set the DEFTYPE(PERMDYN) attribute for the reply-to queue because
the reply messages to such commands will be persistent.

Defining your system

42 Concepts and Planning Guide

System administration objects
These queues are used for event messages. The names of the system administration
objects begin with the characters SYSTEM.ADMIN.

There are three system-administration objects:
v The SYSTEM.ADMIN.QMGR.EVENT queue
v The SYSTEM.ADMIN.PERFM.EVENT queue
v The SYSTEM.ADMIN.CHANNEL.EVENT queue

Channel queues
To use distributed queuing, you need to define the following objects:
v A local queue with the name SYSTEM.CHANNEL.SYNCQ, which is used to

maintain sequence numbers and logical units of work identifiers (LUWID) of
channels. To improve channel performance, you should define this queue with
an index type of MSGID (as shown in the supplied sample queue definition).

v Channel command queues with the names SYSTEM.CHANNEL.INITQ and
SYSTEM.CHANNEL.REPLY.INFO.

Do not define these queues as shared queues.

Cluster queues
To use MQSeries clusters, you need to define the following objects:
v A local queue called the SYSTEM.CLUSTER.COMMAND.QUEUE, which is used

to communicate repository changes between queue managers. Messages written
to this queue contain updates to the repository data to be applied to the local
copy of the repository, or requests for repository data.

v A local queue called SYSTEM.CLUSTER.REPOSITORY.QUEUE, which is used to
hold a persistent copy of the repository.

v A local queue called SYSTEM.CLUSTER.TRANSMIT.QUEUE, which is the
transmission queue for all destinations in the cluster. For performance reasons
you should define this queue with an index type of CORRELID (as shown in the
sample queue definition).

These queues typically contain large numbers of messages.

Do not define these queues as shared queues.

Queue-sharing group queues
To use shared channels and intra-group queuing, you need to define the following
objects:
v A shared queue with the name SYSTEM.QSG.CHANNEL.SYNCQ, which is used

to hold synchronization information for shared channels.
v A shared queue with the name SYSTEM.QSG.TRANSMIT.QUEUE, which is used

as the transmission queue for intra-group queuing. If you are running in a
queue-sharing group, you must define this queue, even if you are not using
intra-group queuing.

Defining your system

Chapter 5. Defining your system 43

Storage classes
You are recommended to define the following six storage classes. You must define
four of them because they are required by MQSeries. The other storage class
definitions are recommended because they are used in the sample queue
definitions.

DEFAULT (required)
This storage class is used for all message queues that are not performance
critical and that don’t fit in to any of the other storage classes. It is also the
supplied default storage class if you do not specify one when defining a
queue.

NODEFINE (required)
This storage class is used if the storage class specified when you define a
queue is not defined.

REMOTE (required)
This storage class is used primarily for transmission queues, that is, system
related queues with short-lived performance-critical messages.

SYSLNGLV
This storage class is used for long-lived, performance-critical messages.

SYSTEM (required)
This storage class is used for performance critical, system related message
queues, for example the SYSTEM.CHANNEL.SYNQ and the
SYSTEM.CLUSTER.* queues.

SYSVOLAT
This storage class is used for short-lived, performance-critical messages.

You can modify their attributes and add other storage class definitions as required.

Dead-letter queue
The dead-letter queue is used if the message destination is not valid. MQSeries
puts such messages on a local queue called the dead-letter queue. Although having
a dead-letter queue is not mandatory, it should be regarded as essential, especially
if you are using either distributed queuing or one of the MQSeries bridges.

If you decide to define a dead-letter queue, you must also tell the queue manager
its name. To do this use the ALTER QMGR command, as shown in the sample.

Default transmission queue
The default transmission queue is used when no other suitable transmission queue
is available for sending messages to another queue manager. If you define a
default transmission queue, you must also define a channel to serve the queue. If
you do not do this, messages that are put on to the default transmission queue will
not be transmitted to the remote queue manager and will remain on the queue.

If you decide to define a default transmission queue, you must also tell the queue
manager its name. To do this use the ALTER QMGR command, as shown in the
sample.

Defining your system

44 Concepts and Planning Guide

Sample definitions supplied with MQSeries
The following sample definitions are supplied with MQSeries. You can use them to
define the system objects and to customize your own objects. You can include
some of them in the initialization input data sets (described in “Initialization
commands” on page 77).

Table 5. MQSeries sample definitions for system objects

Initialization input data set Sample name

CSQINP1 thlqual.SCSQPROC(CSQ4INP1)

CSQINP2 thlqual.SCSQPROC(CSQ4INSG)
thlqual.SCSQPROC(CSQ4INSS)
thlqual.SCSQPROC(CSQ4INSX)
thlqual.SCSQPROC(CSQ4INYC)
thlqual.SCSQPROC(CSQ4INYD)
thlqual.SCSQPROC(CSQ4INYG)

Other thlqual.SCSQPROC(CSQ4DISP)
thlqual.SCSQPROC(CSQ4DISQ)
thlqual.SCSQPROC(CSQ4INPX)
thlqual.SCSQPROC(CSQ4IVPQ)
thlqual.SCSQPROC(CSQ4IVPG)

The CSQINP1 sample
The sample CSQINP1 data set thlqual.SCSQPROC(CSQ4INP1) contains definitions
of buffer pools, page set to buffer pool associations, MAXSMSGS and an ALTER
SECURITY command. The sample should be included in the CSQINP1
concatenation of your MQSeries started task procedure.

CSQ4INSG system object sample
The sample CSQINP2 data set thlqual.SCSQPROC(CSQ4INSG) contains definitions
for the following system objects for general use:
v System default objects
v System command objects
v System administration objects

You must define the objects in this sample, but you need to do it only once when
the subsystem is first started. Including the definitions in the CSQINP2 data set is
the best way to do this. They are maintained across MQSeries subsystem shutdown
and restart. You must not change the object names, but you can change their
attributes if required.

CSQ4INSS system object sample
You can define additional system objects if you are using queue-sharing groups.

Sample data set thlqual.SCSQPROC(CSQ4INSS) contains a set of definitions for the
system objects required for shared channels and intra-group queuing.

You cannot use this sample as is; you must customize it before use. Then you can
include this member in the CSQINP2 DD concatenation of the MQSeries startup
procedure, or you can use it as input to the COMMAND function of the CSQUTIL
utility to issue the required DEFINE commands.

Defining your system

Chapter 5. Defining your system 45

When you are defining group or shared objects, you only need to include them in
the CSQINP2 DD concatenation for one queue manager in the queue-sharing
group.

CSQ4INSX system object sample
You must define additional system objects if you are using distributed queuing and
clustering.

Sample data set thlqual.SCSQPROC(CSQ4INSX) contains the queue definitions
required. You can include this member in the CSQINP2 DD concatenation of the
MQSeries startup procedure, or you can use it as input to the COMMAND
function in CSQUTIL utility to issue the required DEFINE commands.

There are two types of object definitions:
v SYSTEM.CHANNEL.xx, needed for any distributed queuing
v SYSTEM.CLUSTER.xx, needed for clustering

CSQ4INYC object sample
If you are using clustering, definitions equivalent to the channel definitions and
remote queue definitions of distributed queuing are created automatically, when
needed. However, some manual channel definitions are needed – a cluster-receiver
channel for the cluster and a cluster-sender definition to at least one cluster
repository queue manager.

Sample data set thlqual.SCSQPROC(CSQ4INYC) contains the following sample
definitions that you can use for customizing your clustering objects:
v Definitions for the queue manager
v Definitions for the receiving channel
v Definitions for the sending channel
v Definitions for cluster queues
v Definitions for lists of clusters

You cannot use this sample as is; you must customize it before use. Then you can
include this member in the CSQINP2 DD concatenation of the MQSeries startup
procedure, or you can use it as input to the COMMAND function of the CSQUTIL
utility to issue the required DEFINE commands. (This is preferable because it
means that you don’t have to redefine these objects each time you restart
MQSeries).

CSQ4INYD object sample
If you are using distributed queuing and not clustering, you need to set up your
own queues, processes, and channels.

Sample data set thlqual.SCSQPROC(CSQ4INYD) contains sample definitions that
you can use for customizing your distributed queuing objects. It comprises:
v A set of definitions for the sending end
v A set of definitions for the receiving end
v A set of definitions for using clients

You cannot use this sample as is; you must customize it before use. Then you can
include this member in the CSQINP2 DD concatenation of the MQSeries startup
procedure, or you can use it as input to the COMMAND function of the CSQUTIL

Defining your system

46 Concepts and Planning Guide

utility to issue the required DEFINE commands. (This is preferable because it
means that you don’t have to redefine these objects each time you restart
MQSeries).

CSQ4INYG object sample
Sample data set thlqual.SCSQPROC(CSQ4INYG) contains the following sample
definitions that you can use for customizing your own objects for general use:
v Storage classes
v Dead-letter queue
v Default transmission queue
v CICS adapter objects

You cannot use this sample as is, you must customize it before use. Then you can
include this member in the CSQINP2 DD concatenation of the MQSeries startup
procedure, or you can use it as input to the COMMAND function of the CSQUTIL
utility to issue the required DEFINE commands. (This is preferable because it
means that you don’t have to redefine these objects each time you restart
MQSeries).

In addition to the sample definitions here, you can use the system object
definitions as the basis for your own resource definitions. For example, you could
make a working copy of SYSTEM.DEFAULT.LOCAL.QUEUE and name it
MY.DEFAULT.LOCAL.QUEUE. You can then change any of the parameters in this
copy as required. You could then issue a DEFINE command by whichever method
you choose, provided you have the authority to create resources of that type.

Default transmission queue
Read “Default transmission queue” on page 44 before you decide whether you
want to define a default transmission queue.
v If you decide that you do want to define a default transmission queue,

remember that you must also define a channel to serve it.
v If you decide that you do not want to define one, remember to remove the

DEFXMITQ statement from the ALTER QMGR command in the sample.

CICS adapter objects
The sample defines an initiation queue named CICS01.INITQ. This queue is used
by the MQSeries-supplied CKTI transaction. You can change the name of this
queue; however it must match the name specified in the CICS system initialization
table (SIT) or SYSIN override in the INITPARM statement.

CSQ4DISP display sample
Sample data set thlqual.SCSQPROC(CSQ4DISP) contains a set of generic DISPLAY
commands that display all the defined resources on your MQSeries subsystem.
This includes the definitions for all MQSeries objects and definitions such as
storage classes and trace. These commands can generate a large amount of output.
This sample can be used in the CSQINP2 data set or as input to the COMMAND
function of the CSQUTIL utility.

Defining your system

Chapter 5. Defining your system 47

CSQ4DISQ distributed queuing using CICS sample
Sample data set thlqual.SCSQPROC(CSQ4DISQ) contains a set of commands that
are required to implement distributed queuing using CICS ISC. (This is described
in the MQSeries for OS/390 System Setup Guide).

You can include this member in the CSQINP2 DD concatenation of the MQSeries
startup procedure, or you can use the it as input to COMMAND function of the
CSQUTIL utility to issue the required DEFINE commands.

CSQ4INPX sample
Sample data set thlqual.SCSQPROC(CSQ4INPX) contains a set of commands that
you might want to execute each time the channel initiator starts. You must
customize this sample before use; you can then include it in the CSQINPX data set
for the channel initiator.

CSQ4IVPQ and CSQ4IVPG samples
Sample data sets thlqual.SCSQPROC(CSQ4IVPQ) and
thlqual.SCSQPROC(CSQ4IVPG) contain sets of DEFINE commands that are
required to run the installation verification programs (IVPs).

You can include these samples in the CSQINP2 data set. When you have run the
IVPs successfully, you do not need to run them again each time MQSeries is
restarted. Therefore, you do not need to keep these samples in the CSQINP2
concatenation permanently.

Where to find more information
You can find more information about the topics discussed in this chapter from the
following sources:

Table 6. Where to find more information about system parameters and system objects

Topic Where to look

Using initialization input data sets
System parameter macros
Installation verification program

MQSeries for OS/390 System Setup Guide

Utility programs MQSeries for OS/390 System Administration
Guide

MQSeries commands MQSeries MQSC Command Reference

MQSeries clusters MQSeries Queue Manager Clusters

MQSeries events MQSeries Event Monitoring

Defining your system

48 Concepts and Planning Guide

Chapter 6. Recovery and restart

This chapter describes how MQSeries for OS/390 recovers after it has stopped, and
what happens when the system is restarted. It contains the following sections:
v “How changes are made to data”
v “How consistency is maintained” on page 51
v “What happens during termination” on page 54
v “What happens during restart and recovery” on page 55
v “How in-doubt units of recovery are resolved” on page 56
v “Shared queue recovery” on page 59
v “Where to find more information” on page 60

How changes are made to data
MQSeries must interact with other subsystems to keep all the data consistent. This
section discusses units of recovery; what they are and how they are used in back
outs.

Units of recovery
A unit of recovery is the processing done by a single MQSeries subsystem for an
application program, that changes MQSeries data from one point of consistency to
another. A point of consistency – also called a syncpoint or commit point – is a point in
time when all the recoverable data that an application program accesses is
consistent.

A unit of recovery begins with the first change to the data after the beginning of
the program or following the previous point of consistency; it ends with a later
point of consistency. Figure 12 shows the relationship between units of recovery,

Time line

Unit of recovery

Application process

MQI call 1 MQI call 2

MQGET
begins

MQGET
ends

MQPUT
ends

MQPUT
begins

Application
process ends

Application
process begins

COMMIT

Point of
consistency

Point of
consistency

Figure 12. A unit of recovery within an application program. Typically, the unit of recovery consists of more than one
MQI call. More than one unit of recovery can occur within an application program.

© Copyright IBM Corp. 1993, 2000 49

the point of consistency, and an application program. In this example, the
application program makes changes to queues through MQI calls 1 and 2. The
application program can include more than one unit of recovery or just one.
However, any complete unit of recovery ends in a commit point.

For example, a bank transaction transfers funds from one account to another. First,
the program subtracts the amount from the first account, account A. Then, it adds
the amount to the second account, B. After subtracting the amount from A, the two
accounts are inconsistent and MQSeries cannot commit. They become consistent
when the amount is added to account B. When both steps are complete, the
program can announce a point of consistency through a commit, making the
changes visible to other application programs.

Normal termination of an application program automatically causes a point of
consistency. Some program requests in CICS and IMS programs also cause a point
of consistency, for example, EXEC CICS SYNCPOINT.

Backing out work
If an error occurs within a unit of recovery, MQSeries removes any changes to
data, returning the data to its state at the start of the unit of recovery; that is,
MQSeries backs out the work. The events are shown in Figure 13.

Point of
consistency

New point of
consistency

One unit of recovery

Page set updates Back out updates

Begin unit
of recovery

Begin
back out

Data is returned to
its initial state;

end unit of recovery

Time line

Figure 13. A unit of recovery showing back out

Recovery and restart

50 Concepts and Planning Guide

How consistency is maintained
If data in an MQSeries subsystem is to be consistent with batch, CICS, IMS, or
TSO, any data changed in one must be matched by a change in the other. Before
one system commits the changed data, it must know that the other system can
make the corresponding change. So, the systems must communicate.

During a two-phase commit (for example under CICS), one subsystem coordinates
the process. That subsystem is called the coordinator; the other is the participant.
CICS or IMS is always the coordinator in interactions with MQSeries, and
MQSeries is always the participant. In the batch or TSO environment, MQSeries
can participate in two-phase commit protocols coordinated by OS/390 RRS.

During a single-phase commit (for example under TSO or batch), MQSeries is always
the coordinator in the interactions and completely controls the commit process.

Consistency with CICS or IMS
The connection between MQSeries and CICS or IMS supports the following
syncpoint protocols:
v Two-phase commit – for transactions that update resources owned by more than

one resource manager.
This is the standard distributed syncpoint protocol. It involves more logging and
message flows than a single-phase commit.

v Single-phase commit – for transactions that update resources owned by a single
resource manager (MQSeries).
This protocol is optimized for logging and message flows.

v Bypass of syncpoint – for transactions that involve MQSeries but which do
nothing in the queue manager that requires a syncpoint (for example, browsing
a queue).

In each case, CICS or IMS acts as the syncpoint manager.

The stages of the two-phase commit that MQSeries uses to communicate with CICS
or IMS are:
1. In phase 1, each system determines independently whether it has recorded

enough recovery information in its log, and can commit its work.

At the end of the phase, the systems communicate. If they agree, each begins the
next phase.
2. In phase 2, the changes are made permanent. If one of the systems abends

during phase 2, the operation is completed by the recovery process during
restart.

Recovery and restart

Chapter 6. Recovery and restart 51

Illustration of the two-phase commit process
Figure 14 illustrates the two-phase commit process. Events in the CICS or IMS
coordinator are shown on the upper line, events in MQSeries on the lower line.

The numbers in the following discussion are linked to those in the figure.
1. The data in the coordinator is at a point of consistency.
2. An application program in the coordinator calls MQSeries to update a queue

by adding a message.
3. This starts a unit of recovery in MQSeries.
4. Processing continues in the coordinator until an application synchronization

point is reached.
5. The coordinator then starts commit processing. CICS programs use a

SYNCPOINT command or a normal application termination to start the
commit. IMS programs can start the commit by using a CHKP call, a SYNC
call, a GET UNIQUE call to the IOPCB, or a normal application termination.
Phase 1 of commit processing begins.

6. As the coordinator begins phase 1 processing, so does MQSeries.
7. MQSeries successfully completes phase 1, writes this fact in its log, and

notifies the coordinator.
8. The coordinator receives the notification.
9. The coordinator successfully completes its phase 1 processing. Now both

subsystems agree to commit the data changes, because both have completed
phase 1 and could recover from any errors. The coordinator records in its log
the instant of commit – the irrevocable decision of the two subsystems to
make the changes.

Old point of
consistency

New point of
consistency

Old point of
consistency

New point of
consistency

Instant of
COMMIT

COMMIT
process begins

Application
synchronization
point

Phase 1 Phase 2

Phase 2Phase 1

CICS
or
IMS

a b c d

Data is backed
out at restart

Data is backed
out at restart

Data is committed
at restart

Data is in-doubt
at restart and
either backed out
or committed

Begin unit of
recovery

End unit of
recovery

Time lineMQSeries

Figure 14. The two-phase commit process

Recovery and restart

52 Concepts and Planning Guide

The coordinator now begins phase 2 of the processing – the actual commitment.
10. The coordinator notifies MQSeries to begin its phase 2.
11. MQSeries logs the start of phase 2.
12. Phase 2 is successfully completed, and this is now a new point of consistency

for MQSeries. MQSeries then notifies the coordinator that it has finished its
phase 2 processing.

13. The coordinator finishes its phase 2 processing. The data controlled by both
subsystems is now consistent and available to other applications.

How consistency is maintained after an abnormal termination
When MQSeries is restarted after an abnormal termination, it must determine
whether to commit or to back out units of recovery that were active at the time of
termination. For certain units of recovery, MQSeries has enough information to
make the decision. For others, it does not, and must get information from the
coordinator when the connection is reestablished.

Figure 14 shows four periods within the two phases: a, b, c, and d. The status of a
unit of recovery depends on the period in which termination happened. The status
can be:

In flight
MQSeries ended before finishing phase 1 (period a or b); during restart,
MQSeries backs out the updates.

In doubt
MQSeries ended after finishing phase 1 and before starting phase 2 (period
c); only the coordinator knows whether the error happened before or after
the commit (point 9). If it happened before, MQSeries must back out its
changes; if it happened after, MQSeries must make its changes and commit
them. At restart, MQSeries waits for information from the coordinator
before processing this unit of recovery.

In commit
MQSeries ended after it began its own phase 2 processing (period d); it
makes committed changes.

In backout
MQSeries ended after a unit of recovery began to be backed out but before
the process was complete (not shown in the figure); during restart,
MQSeries continues to back out the changes.

Recovery and restart

Chapter 6. Recovery and restart 53

What happens during termination
MQSeries terminates normally in response to the command STOP QMGR. If
MQSeries stops for any other reason, the termination is considered to be abnormal.

Normal termination
In a normal termination, MQSeries stops all activity in an orderly way. You can
stop MQSeries using either quiesce, force, or restart mode. The effects are given in
Table 7:

Table 7. Termination using QUIESCE, FORCE, and RESTART

Thread type QUIESCE FORCE RESTART

Active threads Run to completion Back out Back out

New threads Can start Not permitted Not permitted

New connections Not permitted Not permitted Not permitted

Batch applications are notified if a termination occurs while the application is still
connected.

With CICS, a current thread runs only to the end of the unit of recovery. With
CICS, stopping MQSeries in quiesce mode stops the CICS adapter, and so if an
active task contains more than one unit of recovery, the task does not necessarily
run to completion.

If you stop MQSeries in force or restart mode, no new threads are allocated, and
work on connected threads is rolled back. Using these modes can create in-doubt
units of recovery for threads that are between commit processing phases. They are
resolved when MQSeries is reconnected with the controlling CICS, IMS, or RRS
subsystem.

When you stop MQSeries, in any mode, the steps are:
1. Connections are ended.
2. MQSeries ceases to accept commands.
3. MQSeries ensures that any outstanding updates to the page sets are completed.
4. The DISPLAY USAGE command is issued internally by MQSeries so that the

restart RBA is recorded on the OS/390 console log.
5. The shutdown checkpoint is taken and the BSDS is updated.

Terminations that specify quiesce mode do not affect in-doubt units of recovery.
Any unit that is in doubt remains in doubt.

Abnormal termination
An abnormal termination can leave data in an inconsistent state, for example:
v A unit of recovery has been interrupted before reaching a point of consistency.
v Committed data has not been written to page sets.
v Uncommitted data has been written to page sets.
v An application program has been interrupted between phase 1 and phase 2 of

the commit process, leaving the unit of recovery in doubt.

MQSeries resolves any data inconsistencies arising from abnormal termination
during restart and recovery.

Recovery and restart

54 Concepts and Planning Guide

What happens during restart and recovery
MQSeries uses its recovery log and the bootstrap data set (BSDS) to determine
what to recover when it restarts. The BSDS identifies the active and archive log
data sets, and the location of the most recent MQSeries checkpoint in the log.

After MQSeries has been initialized, the restart process takes place as follows:
v Log initialization
v Current status rebuild
v Forward log recovery
v Backward log recovery
v Queue index rebuilding

When recovery has been completed:
v Committed changes are reflected in the data.
v In-doubt activity is reflected in the data. However, the data is locked and cannot

be used until MQSeries recognizes and acts on the in-doubt decision.
v Interrupted in-flight and in-abort changes have been removed from the queues.

The messages are consistent and can be used.
v A new checkpoint has been taken.
v New indexes have been built for indexed queues containing persistent messages

(described in “Rebuilding queue indexes”).

Batch applications are not notified when restart occurs after the application has
requested a connection.

If dual BSDSs are in use, MQSeries checks the consistency of the time stamps in
the BSDS:
v If both copies of the BSDS are current, MQSeries tests whether the two time

stamps are equal. If they are not, MQSeries issues message CSQJ120E and
terminates. This can happen when the two copies of the BSDS are maintained on
separate DASD volumes and one of the volumes was restored while MQSeries
was stopped. MQSeries detects the situation at restart.

v If one copy of the BSDS was deallocated, and logging continued with a single
BSDS, a problem could arise. If both copies of the BSDS are maintained on a
single volume, and the volume was restored, or if both BSDS copies were
restored separately, MQSeries might not detect the restoration. In that case, log
records not noted in the BSDS would be unknown to the system.

Rebuilding queue indexes
To increase the speed of MQGET operations on a queue where messages are not
retrieved sequentially, you can specify that you want MQSeries to maintain an
index of the message or correlation identifiers for all the messages on that queue
(as described in the MQSeries Application Programming Guide).

When MQSeries is restarted, these indexes are rebuilt for each queue. This only
applies to persistent messages; nonpersistent messages are deleted at restart. If
your indexed queues contain large numbers of persistent messages, this will
increase the time taken to restart MQSeries.

Recovery and restart

Chapter 6. Recovery and restart 55

How in-doubt units of recovery are resolved
If MQSeries loses its connection to CICS, IMS, or RRS, it normally attempts to
recover all inconsistent objects at restart. The information needed to resolve
in-doubt units of recovery must come from the coordinating system. The next
section describes the process of resolution.

How in-doubt units of recovery are resolved from CICS
The resolution of in-doubt units has no effect on CICS resources. CICS is in control
of recovery coordination and, when it restarts, automatically commits or backs out
each unit, depending on whether there was a log record marking the beginning of
the commit. The existence of in-doubt objects does not lock CICS resources while
MQSeries is being reconnected.

One of the functions of the CICS adapter is to keep data synchronized between
CICS and MQSeries. If MQSeries abends while connected to CICS, it is possible for
CICS to commit or back out work without MQSeries being aware of it. When
MQSeries restarts, that work is termed in doubt.

MQSeries cannot resolve these in-doubt units of recovery (that is, commit or back
out the changes made to MQSeries resources) until the connection to CICS is
restarted or reconnected.

A process to resolve in-doubt units of recovery is initiated during startup of the
CICS adapter. The process starts when the adapter requests a list of in-doubt units
of recovery. Then:
v The adapter receives a list of in-doubt units of recovery for this connection ID

from MQSeries, and passes them to CICS for resolution.
v CICS compares entries from this list with entries in its own log. CICS determines

from its own list what action it took for each in-doubt unit of recovery.

Under some circumstances, CICS cannot run the MQSeries process to resolve
in-doubt units of recovery. When this happens, MQSeries sends one of these
messages:
v CSQC404E
v CSQC405E
v CSQC406E
v CSQC407E

followed by the message CSQC408I.

For details of what these messages mean, see the MQSeries for OS/390 Messages and
Codes manual.

For all resolved units, MQSeries updates the queues as necessary and releases the
corresponding locks. Unresolved units can remain after restart. Resolve them by
the methods described in the MQSeries for OS/390 System Administration Guide.

Recovery and restart

56 Concepts and Planning Guide

How in-doubt units of recovery are resolved from IMS
Resolving in-doubt units of recovery in IMS has no effect on DL/I resources. IMS
is in control of recovery coordination and, when it restarts, automatically commits
or backs out incomplete DL/I work. The decision to commit or back out for online
regions (non-fast-path) is on the presence or absence of IMS log record types
X'3730' and X'3801' respectively. The existence of in-doubt units of recovery does
not imply that DL/I records are locked until MQSeries connects.

During restart, MQSeries makes a list of in-doubt units of recovery. IMS builds its
own list of residual recovery entries (RREs). The RREs are logged at IMS
checkpoints until all entries are resolved.

During reconnection of an IMS region to MQSeries, IMS indicates to MQSeries
whether to commit or back out units of work marked in MQSeries as in doubt.

When in-doubt units are resolved:
1. If MQSeries recognizes that it has marked an entry for commit and IMS has

marked it to be backed out, MQSeries issues message CSQQ010E. MQSeries
issues this message for all inconsistencies of this type between MQSeries and
IMS.

2. If MQSeries has any remaining in-doubt units, the adapter issues message
CSQQ008I.

For all resolved units, MQSeries updates queues as necessary and releases the
corresponding locks.

MQSeries maintains locks on in-doubt work that was not resolved. This can cause
a backlog in the system if important locks are being held. The connection remains
active so you can resolve the IMS RREs. Recover the in-doubt threads by the
methods described in the MQSeries for OS/390 System Administration Guide.

All in-doubt work should be resolved unless there are software or operating
problems, such as with an IMS cold start. In-doubt resolution by the IMS control
region takes place in two circumstances:
1. At the start of the connection to MQSeries, during which resolution is done

synchronously.
2. When a program abends, during which the resolution is done asynchronously.

Recovery and restart

Chapter 6. Recovery and restart 57

How in-doubt units of recovery are resolved from RRS
One of the functions of the RRS adapter is to keep data synchronized between
MQSeries and other RRS-participating resource managers. If a failure occurs when
MQSeries has completed phase one of the commit and is waiting for a decision
from RRS (the commit coordinator), the unit of recovery enters the in-doubt state.

When communication is reestablished between RRS and MQSeries, RRS
automatically commits or backs out each unit of recovery, depending on whether
there was a log record marking the beginning of the commit. MQSeries cannot
resolve these in-doubt units of recovery (that is, commit or back out the changes
made to MQSeries resources) until the connection to RRS is reestablished.

Under some circumstances, RRS cannot resolve in-doubt units of recovery. When
this happens, MQSeries sends one of the following messages to the OS/390
console:
v CSQ3011I
v CSQ3013I
v CSQ3014I
v CSQ3016I

For details of what these messages mean, see the MQSeries for OS/390 Messages and
Codes manual.

For all resolved units of recovery, MQSeries updates the queues as necessary and
releases the corresponding locks. Unresolved units of recovery can remain after
restart. Resolve them by the method described in the MQSeries for OS/390 System
Administration Guide.

Recovery and restart

58 Concepts and Planning Guide

Shared queue recovery
This section describes MQSeries recovery in the queue-sharing group environment.

Transactional recovery
When an application issues an MQBACK call or terminates abnormally (for
example, because of an EXEC CICS ROLLBACK or an IMS abend) thread level
information stored in the queue manager ensures that the in-flight unit of work is
rolled back. MQPUT and MQGET operations within syncpoint on shared queues
are rolled back in the same way as updates to non-shared queues.

Peer recovery
If a queue manager fails, it disconnects abnormally from the Coupling Facility
structures that it is currently connected to. If the connection between the OS/390
instance and the Coupling Facility fails (for example, physical link failure or power
off of a Coupling Facility or partition) this is also detected as an abnormal
termination of the connection between the queue manager and the Coupling
Facility structures involved. Other queue managers in the same queue-sharing
group that remain connected to that structure detect the abnormal disconnection
and all attempt to initiate peer recovery for the failed queue manager on that
structure. Only one of these queue managers initiates peer recovery successfully,
but all the other queue managers cooperate in the recovery of units of work that
were owned by the queue manager that failed.

If a queue manager fails when there are no peers connected to a structure, recovery
will be performed when another queue manager connects to that structure, or
when the queue manager that failed restarts.

Peer recovery is performed on a structure by structure basis and it is possible for a
single queue manager to be participating in the recovery of more than one
structure at the same time. However, the set of peers cooperating in the recovery of
different structures might vary depending on which queue managers were
connected to the different structures at the time of failure.

When the failed queue manager restarts, it reconnects to the structures that it was
connected to at the time of failure, and recovers any remaining unresolved units of
work that were not recovered by peer recovery.

Peer recovery is a multi-phase process. During the first phase, units of work that
had progressed beyond the in-flight phase are recovered; this might involve
committing messages for units of work that are in-commit and locking messages
for units of work that are in-doubt. During the second phase, queues that had
threads active against them in the failing queue manager are checked,
uncommitted messages related to in-flight units of work are rolled back, and
information about active handles on shared queues in the failed queue manager
are reset. This means that MQSeries will reset any indicators that the failing queue
manager had a shared queue open for input-exclusive, allowing other active queue
managers to open the queue for input.

Recovery and restart

Chapter 6. Recovery and restart 59

Shared queue definitions
The queue objects that represent the attributes of a shared queue are held in the
shared DB2 repository used by the queue-sharing group. You should ensure that
adequate procedures are in place for the backup and recovery of the DB2 tables
used to hold MQSeries objects. You can also use the MQSeries CSQUTIL utility to
create MQSC commands for replay into a queue manager to redefine MQSeries
objects, including shared queue and group definitions stored in DB2.

Coupling Facility failure
In the unlikely event of a coupling facility failure, any MQSeries messages stored
in the affected structures will be lost. Any queue manager connected to a structure
in a failing Coupling Facility will terminate abnormally. Although the
administration structure contains no message data, special considerations apply
because all queue managers in the queue-sharing group are connected to it.
Because information about units of work touching shared queues is stored in the
administration structure, an administration structure failure means that units of
work can neither commit or back out, so to maintain unit of work integrity, the
queue manager must terminate.

When all queue managers connected to a failing structure have terminated, the
structure can be reallocated provided there are no failed disconnected connections
(these should be purged using the OS/390 command SETXCF
FORCE,CONNECTION). The structure is reallocated automatically when a queue
manager is restarted and attempts to connect to the structure. For example, if a
Coupling Facility structure used to hold shared queues fails it will be reallocated
when the queue manager reconnects. The shared queues can be opened
immediately and used because all the object definitions are stored in DB2, however
any messages that were on the queues before the failure will have been lost.

Where to find more information
You can find more information about the topics discussed in this chapter from the
following sources:

Table 8. Where to find more information about recovery and restart

Topic Where to look

Planning your backup strategy “Chapter 18. Planning for backup and
recovery” on page 131

System parameters MQSeries for OS/390 System Setup Guide

Routine backup and recovery procedures
Resolving in-doubt threads
Resolving problems during restart
Utility programs

MQSeries for OS/390 System
Administration Guide

Console messages MQSeries for OS/390 Messages and Codes

MQSeries commands MQSeries MQSC Command Reference

Recovery and restart

60 Concepts and Planning Guide

Chapter 7. Security

This chapter discusses MQSeries security. It contains the following sections:
v “Why you need to protect MQSeries resources”
v “Security controls and options” on page 62
v “Resources you can protect” on page 64
v “Channel security” on page 67
v “Where to find more information” on page 67

Why you need to protect MQSeries resources
Because MQSeries handles the transfer of information that is potentially valuable,
it needs the safeguard of a security system. This is to ensure that the resources
MQSeries owns and manages are protected from unauthorized access that might
lead to the loss or disclosure of the information. It is essential that none of the
following are accessed or changed by any unauthorized user or process:
v Connections to MQSeries
v MQSeries objects such as queues, processes, and namelists
v MQSeries transmission links
v MQSeries system control commands
v MQSeries messages
v Context information associated with messages

To provide the necessary security, MQSeries uses the OS/390 system authorization
facility (SAF) to route authorization requests to an External Security Manager
(ESM), for example Resource Access Control Facility (RACF). MQSeries does no
security verification of its own. Where distributed queuing or clients are being
used, additional security measures might be required, for which MQSeries
provides channel exits and the MCAUSER channel attribute.

The decision to allow access to an object is made by the ESM and MQSeries
follows that decision. If the ESM cannot make a decision, MQSeries prevents access
to the object.

If you do nothing
If you do nothing about security, the most likely effect is that all users can access
and change every resource. This includes not only local users, but also those on
remote systems using distributed queuing or clients, where the logon security
controls might be less strict than is normally the case for OS/390.

In order to enable security checking you must do the following:
v Install and activate an ESM (for example, RACF)
v Define the MQADMIN class if you are using an ESM other than RACF
v Activate the MQADMIN class

© Copyright IBM Corp. 1993, 2000 61

Security controls and options
You can specify whether security is turned on for the whole MQSeries subsystem,
and whether you want to perform security checks at queue manager or
queue-sharing group level. You can also control the number of user IDs checked
for API-resource security.

Subsystem security
Subsystem security is a control that specifies whether any security checking is
done on the whole MQSeries subsystem. If you do not require security checking
(for example, on a test system), or if you are satisfied with the level of security on
all the resources that can connect to MQSeries (including clients and channels), you
can turn security checking off for the queue manager or queue-sharing group so
that no further security checking takes place.

This is the only check that can turn security off completely and determine whether
any other security checks are performed or not. That is, if you turn off checking for
the queue manager or queue-sharing group, no other MQSeries checking is done; if
you leave it turned on, MQSeries checks your security requirements for other
MQSeries resources.

Queue manager or queue-sharing group level checking
Security can be implemented at queue manager level or at queue-sharing group
level. If you implement security at queue-sharing group level, all the queue
managers in the group share the same profiles. This means that there are fewer
profiles to define and maintain, making security management easier.

It is also possible to implement a combination of both if your installation requires
it, for example, during migration or if you have one queue manager in the
queue-sharing group that requires different levels of security to the other queue
managers in the group.

Queue-sharing group level security
Queue-sharing group level security checking is performed for the entire
queue-sharing group. It enables you to simplify security administration
because it requires you to define fewer security profiles. The authorization
of a user ID to use a particular resource is handled at the queue-sharing
group level, and is independent of which queue manager that user ID is
using to access the resource.

For example, say a server application runs under user ID SERVER and
wants access to a queue called SERVER.REQUEST, and you want to run an
instance of SERVER on each OS/390 image in the sysplex. Rather than
permitting SERVER to open SERVER.REQUEST on each queue manager
individually (queue manager level security), you can permit access once at
the queue-sharing group level.

Queue-sharing group level security profiles can be used to protect all types
of resource, whether local or shared.

Queue manager level security
Queue manager level security checking is performed at subsystem level
using security profiles specific to that queue manager. This is how security
is managed on Version 2.1 of MQSeries for OS/390, or earlier.

Queue manager level security profiles can be used to protect all types of
resource, whether local or shared.

Security

62 Concepts and Planning Guide

Combination of both levels
You can use a combination of both queue manager and queue-sharing
group level security.

You can override queue-sharing group level security settings for a
particular queue manager that is a member of that group. This means that
you can perform a different level of security checks on an individual queue
manager to those performed on the other queue managers in the group.

Controlling the number of user IDs checked
RESLEVEL is a RACF profile that controls the number of user IDs checked for
MQSeries resource security. Normally, when a user attempts to access an MQSeries
resource, RACF checks the relevant user ID or IDs to see if access is allowed to
that resource. By defining a RESLEVEL profile you can control whether zero, one
or, where applicable, two user IDs are checked.

These controls are done on a connection by connection basis, and last for the life of
the connection.

There is only one RESLEVEL profile per queue manager. Control is implemented
by the access that a user ID has to this profile.

Security

Chapter 7. Security 63

Resources you can protect
When MQSeries starts, or when instructed by an operator command, MQSeries
determines which resources you want to protect. You can control which security
checks are performed for each individual queue manager. For example, you could
implement a number of security checks on a production queue manager, but none
on a test queue manager.

Connection security
Connection security checking is carried out either when an application program
tries to connect to a queue manager by issuing an MQCONN or MQCONNX
request, or when the channel initiator, or CICS or IMS adapter issues a connection
request.

If you are using queue manager level security, you can turn connection security
checking off for a particular MQSeries subsystem, but if you do any user can
connect to that subsystem.

For the CICS adapter, only the CICS address space user ID is used for the
connection security check—not the individual CICS terminal user ID. For the IMS
adapter, when the IMS control or dependent regions connect to MQSeries, the IMS
address space user ID is checked. For the channel initiator, the user ID used by the
channel initiator address space is checked.

Connection security checking can be turned on or off at either queue manager or
queue-sharing group level.

API-resource security
Resources are checked when an application opens an object with an MQOPEN or
an MQPUT1 call. The access needed to open an object depends on what open
options are specified when the queue is opened.

API-resource security is subdivided into these checks:
v Queue
v Process
v Namelist
v Alternate user
v Context

No security checks are performed when opening the queue manager object or
when accessing storage class objects.

Queue security
Queue security checking controls who is allowed to open which queue, and what
options they are allowed to open it with. For example, a user might be allowed to
open a queue called PAYROLL.INCREASE.SALARY to browse the messages on the
queue (via the MQOO_BROWSE option), but not to remove messages from the
queue (via one of the MQOO_INPUT_* options). If you turn checking for queues
off, any user can open any queue with any valid open option (that is, any valid
MQOO_* option on an MQOPEN or MQPUT1 call).

Queue security checking can be turned on or off at either queue manager or
queue-sharing group level.

Security

64 Concepts and Planning Guide

Process security
Process security checking is carried out when a user opens a process definition
object. If you turn checking for processes off, any user can open any process.

Process security checking can be turned on or off at either queue manager or
queue-sharing group level.

Namelist security
Namelist security checking is carried out when a user opens a namelist. If you turn
checking for namelists off, any user can open any namelist.

Namelist security checking can be turned on or off at either queue manager or
queue-sharing group level.

Alternate user security
Alternate user security controls whether one user ID can use the authority of
another user ID to open an MQSeries object.

For example:
v A server program running under user ID PAYSERV retrieves a request message

from a queue that was put on the queue by user ID USER1.
v When the server program gets the request message, it processes the request and

puts the reply back into the reply-to queue specified with the request message.
v Instead of using its own user ID (PAYSERV) to authorize opening the reply-to

queue, the server can specify some other user ID, in this case, USER1. In this
example, alternate user security would control whether user ID PAYSERV is
allowed to specify user ID USER1 as an alternate user ID when opening the
reply-to queue.

The alternate user ID is specified in the AlternateUserId field of the object
descriptor (MQOD).

You can use alternate user IDs on any MQSeries object, for example, processes or
namelists. It does not affect the user ID used by any other resource managers, for
example, for CICS security or for OS/390 data set security.

If alternate user security is not active, any user can use any other user ID as an
alternate user ID.

Alternate user security checking can be turned on or off at either queue manager
or queue-sharing group level.

Context security
Context is information that is applicable to a particular message and is contained
in the message descriptor (MQMD) that is part of the message. The context
information comes in two sections:

Identity section
The user of the application that first put the message to a queue. It consists
of the following fields:
v UserIdentifier
v AccountingToken
v ApplIdentityData

Security

Chapter 7. Security 65

Origin section
The application that put the message on the queue where it is currently
stored. It consists of the following fields:
v PutApplType
v PutApplName
v PutDate
v PutTime
v ApplOriginData

Applications can specify the context data when either an MQPUT or an MQPUT1
call is made. This data might be generated by the application, it might be passed
on from another message, or it might be generated by the queue manager by
default. For example, context data can be used by server programs to check the
identity of the requester, that is, did this message come from the correct
application? Typically, the UserIdentifier field is used to determine the user ID of
an alternate user.

You use context security to control whether the user can specify any of the context
options on any MQOPEN or MQPUT1 call. For information about the context
options, see the MQSeries Application Programming Guide; for descriptions of the
message descriptor fields relating to context, see the MQSeries Application
Programming Reference manual.

If you turn context security checking off, any user can use any of the context
options that the queue security allows.

Context security checking can be turned on or off at either queue manager or
queue-sharing group level.

Command security
Command security checking is carried out when a user issues an MQSeries
command from any of the sources described in “Issuing commands” on page 73. A
separate check can be made on the resource specified by the command as
described in “Command resource security” on page 67.

If you turn off command checking, issuers of commands are not checked to see
whether they have the authority to issue the command.

If MQSeries commands are entered from a console, the console must have the
OS/390 SYS console authority attribute. Commands that are issued from the
CSQINP1 or CSQINP2 data sets, or internally by the queue manager, are exempt
from all security checking while those for CSQINPX use the user ID of the channel
initiator address space. You should control who is allowed to update these data
sets through normal data set protection.

Command security checking can be turned on or off at either queue manager or
queue-sharing group level.

Security

66 Concepts and Planning Guide

Command resource security
Some MQSeries commands, for example defining a local queue, involve the
manipulation of MQSeries resources. When command resource security is active,
each time a command involving a resource is issued, MQSeries checks to see if the
user is allowed to change the definition of that resource.

You can use command resource security to help enforce naming standards. For
example, a payroll administrator might be allowed to delete and define only
queues with names beginning “PAYROLL”. If command resource security is
inactive, no security checks are made on the resource that is being manipulated by
the command. Do not confuse command resource security with command security;
the two are independent.

Turning off command resource security checking does not affect the resource
checking that is done specifically for other types of processing that do not involve
commands.

Command resource security checking can be turned on or off at either queue
manager or queue-sharing group level.

Channel security
When you are using channels, the security features available depend on which
communications protocol you are going to use. If you use TCP, there are no
security features provided with the communications protocol. If you are using
APPC, you can flow user ID information from the application that first puts a
message, through the network to the destination application for verification.

For both protocols, you can specify which user IDs you want to check for security
purposes, and how many. Again, the choices available to you depend on which
protocol you are using, what you specify when you define the channel, and the
RESLEVEL settings for the channel initiator.

You can also write your own security exit programs to be called by the MCA.

Where to find more information
You can find more information about the topics discussed in this chapter from the
following sources:

Table 9. Where to find more information about security

Topic Where to look

Setting up your security
Channel security

MQSeries for OS/390 System Setup Guide

Console messages MQSeries for OS/390 Messages and Codes

MQSeries commands
Defining channels

MQSeries MQSC Command Reference

Channel security exits MQSeries Intercommunication

Security

Chapter 7. Security 67

Security

68 Concepts and Planning Guide

Chapter 8. Availability

There are several features of MQSeries that are designed to increase system
availability if the queue manager or channel initiator fails. These are discussed in
the following sections:
v “Shared queues”
v “Shared channels” on page 70
v “Using the OS/390 Automatic Restart Manager (ARM)” on page 71
v “Using the OS/390 Extended Recovery Facility (XRF)” on page 72

Shared queues
In the queue-sharing group environment, an application can connect to any of the
queue managers within the queue-sharing group. Because all the queue managers
in the queue-sharing group can access the same set of shared queues, the
application does not depend on the availability of a particular queue manager; any
queue manager in the queue-sharing group can service any queue. This gives
greater availability if a queue manager stops because all the other queue managers
in the queue-sharing group can continue processing the queue. For information
about high availability of shared queues, see “Advantages of using shared queues”
on page 16.

To further enhance the availability of messages in a queue-sharing group,
MQSeries detects if another queue manager in the group disconnects from the
Coupling Facility abnormally, and completes units of work for that queue manager
that are still pending, where possible. This is known as peer recovery and is
described in “Peer recovery” on page 59.

Peer recovery cannot recover units of work that were in doubt at the time of the
failure. You can use the Automatic Restart Manager (ARM) to restart all the
systems involved in the failure (CICS, DB2, and MQSeries for example), and to
ensure that they are all restarted on the same new processor. This means that they
can resynchronize, and gives rapid recovery of in-doubt units of work. This is
described in “Using the OS/390 Automatic Restart Manager (ARM)” on page 71.

© Copyright IBM Corp. 1993, 2000 69

Shared channels
In the queue-sharing group environment, MQSeries provides functions that give
high availability to the network. The channel initiator enables you to use
networking products that balance network requests across a set of eligible servers
and hide server failures from the network (for example, VTAM generic resources).
MQSeries uses a generic port for inbound requests so that attach requests can be
routed to any available channel initiator in the queue-sharing group. This is
described in “Shared channels” on page 18.

Shared outbound channels take the messages they send from a shared transmission
queue. Information about the status of a shared channel is held in one place for the
whole queue-sharing group level. This means that a channel can be restarted
automatically on a different channel initiator in the queue-sharing group if the
channel initiator, queue manager, or communications subsystem fails. This is called
peer channel recovery and is described in “Shared outbound channels” on page 19.

Availability

70 Concepts and Planning Guide

Using the OS/390 Automatic Restart Manager (ARM)
MQSeries for OS/390 can be used in conjunction with the OS/390 automatic
restart manager (ARM). If a queue manager or a channel initiator has failed, ARM
will restart it on the same OS/390 image. If OS/390 fails, a whole group of related
subsystems and applications will also fail. ARM can restart all the failed systems
automatically, in a predefined order, on another OS/390 image within the sysplex.
This is called a cross-system restart.

ARM enables rapid recovery of in-doubt transactions in the shared queue
environment. It also gives higher availability if you are not using queue-sharing
groups.

You can use ARM to restart an MQSeries subsystem that uses LU 6.2
communication protocols on a different OS/390 image within the sysplex in the
event of OS/390 failure. (You cannot do this if you use TCP communication
protocols.)

To enable automatic restart:
v You must set up an ARM coupling data set.
v You must define the automatic restart actions that you want OS/390 to perform

in an ARM policy.
v The ARM policy must be started.
v The subsystem must register with ARM at startup.

If you want to restart queue managers in different OS/390 images automatically,
every queue manager must be defined in each OS/390 image on which that queue
manager might be restarted, with a sysplex-wide unique 4-character subsystem
name.

Using ARM with MQSeries is described in the MQSeries for OS/390 System
Administration Guide.

Availability

Chapter 8. Availability 71

Using the OS/390 Extended Recovery Facility (XRF)
MQSeries can be used in an extended recovery facility (XRF) environment. All
MQSeries-owned data sets (executable code, BSDSs, logs, and page sets) must be
on DASD shared between the active and alternate XRF processors.

If you use XRF for recovery, you must stop MQSeries on the active processor and
start it on the alternate. For CICS, this can be done using the command list table
(CLT) provided by CICS, or manually by the system operator. For IMS, this is a
manual operation and must be done after the coordinating IMS system has
completed the processor switch.

MQSeries utilities must be completed or terminated before MQSeries can be
switched to the alternate processor. Consider the effect of this potential
interruption carefully when planning your XRF recovery plans.

Take care to prevent MQSeries starting on the alternate processor before the
MQSeries system on the active processor terminates. A premature start can cause
severe integrity problems in data, the catalog, and the log. Using global resource
serialization (GRS) helps avoid the integrity problems by preventing simultaneous
use of MQSeries on the two systems. The BSDS must be included as a protected
resource, and the active and alternate XRF processors must be included in the GRS
ring.

Where to find more information
You can find more information about the topics discussed in this chapter from the
following sources:

Table 10. Where to find more information about availability

Topic Where to look

Queue-sharing groups “Chapter 2. Shared queues and
queue-sharing groups” on page 11

System parameters MQSeries for OS/390 System Setup Guide

Using the Automatic Restart Manager
Utility programs

MQSeries for OS/390 System Administration
Guide

Console messages MQSeries for OS/390 Messages and Codes

MQSeries commands MQSeries MQSC Command Reference

Availability

72 Concepts and Planning Guide

Chapter 9. Creating and managing objects

This chapter discusses how to use the MQSeries commands and utilities to create
objects and manage your queue managers. It includes the following sections:
v “Issuing commands”
v “The MQSeries for OS/390 utilities” on page 79
v “Where to find more information” on page 81

Issuing commands
MQSeries for OS/390 supports MQSC commands, which can be issued from the
following sources:
v The OS/390 console or equivalent (such as SDSF/TSO).
v The initialization input data sets.
v The supplied batch utility, CSQUTIL, processing a list of commands in a

sequential data set.
v A suitably authorized application, by sending a command as a message to the

command queue. This can be either:
– A batch region program
– A CICS application
– An IMS application
– A TSO application
– An application program or utility on another MQSeries system

Much of the functionality of these commands is available in a user-friendly way
from the MQSeries for OS/390 operations and controls panels.

Changes made to the resource definitions of a queue manager using the commands
(directly or indirectly) are preserved across restarts of the MQSeries subsystem.

Private and global definitions
When you define an object on MQSeries for OS/390, you can choose whether you
want to share that definition with other queue managers (a global definition), or
whether the object definition is to be used by one queue manager only (a private
definition). This is called the object disposition.

Global definition
If your queue manager belongs to a queue-sharing group, you can choose
to share any object definitions you make with the other members of the
group. This means that an object has to be defined once only, reducing the
total number of definitions required for the whole system.

Global object definitions are held in a shared repository (a DB2 shared
database), and are available to all the queue managers in the queue-sharing
group. These objects have a disposition of GROUP.

Private definition
If you want to create an object definition that is required by one queue
manager only, or if your queue manager is not a member of a
queue-sharing group, you can create object definitions that are not shared
with other members of a queue-sharing group.

© Copyright IBM Corp. 1993, 2000 73

Private object definitions are held on page set zero of the defining queue
manager. These objects have a disposition of QMGR.

You can create private definitions for all six types of MQSeries object (channels,
namelists, process definitions, queues, queue managers, and storage class
definitions), and global definitions for all types of object except queue managers.

MQSeries automatically copies the definition of a group object to page set zero of
each queue manager that uses it. You can alter the copy of the definition
temporarily if you want, and MQSeries allows you to refresh the page set copies
from the repository copy if required. MQSeries always tries to refresh the page set
copies from the repository copy on start up (for channel commands, this is done
when the channel initiator restarts). This ensures that the page set copies reflect the
version on the repository, including any changes that were made when the queue
manager was inactive. There are circumstances under which the refresh is not
performed, for example:
v If a copy of the queue is open, a refresh that changes the usage of the queue will

fail.
v If a copy of a queue has messages on it, a refresh that deletes that queue will

fail.

In these circumstances, the refresh is not performed on that copy, but is performed
on the copies on all other queue managers.

If the queue manager is shut down and then restarted stand-alone, any local copies
of objects are deleted, unless for example, the queue has associated messages.

There is a third object disposition that applies to local queues only. This allows you
to create shared queues. The definition for a shared queue is held on the shared
repository and is available to all the queue managers in the queue-sharing group.
In addition, the messages on a shared queue are also available to all the queue
managers in the queue sharing group. This is described in “Chapter 2. Shared
queues and queue-sharing groups” on page 11. Shared queues have an object
disposition of SHARED.

The following table summarizes the effect of the object disposition options for
queue managers started stand-alone, and as a member of a queue-sharing group.

Disposition Stand-alone queue manager Member of a queue-sharing group

QMGR Object definition held on page
set zero.

Object definition held on page set
zero.

GROUP Not allowed. Object definition held in the shared
repository. Local copy held on page
set zero of each queue manager in the
group.

SHARED Not allowed. Queue definition held in the shared
repository. Messages available to any
queue manager in the group.

Manipulating global definitions
If you want to change the definition of an object that is held in the shared
repository, you need to specify whether you want to change the version on the
repository, or the local copy on page set zero. Use the object disposition as part of
the command to do this.

Creating and managing objects

74 Concepts and Planning Guide

Directing commands to different queue managers
You can choose to execute a command on the queue manager where it is entered,
or on a different queue manager in the queue-sharing group. You can also choose
to issue a particular command in parallel on all the queue managers in a
queue-sharing group.

This is determined by the command scope. The command scope is used in
conjunction with the object disposition to determine which version of an object you
want to work with.

For example, you might want to alter some of the attributes of an object, the
definition of which is held in the shared repository.
v You might want to change the version on one queue manager only, and not

make any changes to the version on the repository or those in use by other
queue managers.

v You might want to change the version in the shared repository for future users,
but leave existing copies unchanged.

v You might want to change the version in the shared repository, but also want
your changes to be reflected immediately on all the queue managers in the
queue-sharing group that hold a copy of the object on their page set zero.

Use the command scope to specify whether the command is executed on this
queue manager, another queue manager, or all queue managers. Use the object
disposition to specify whether the object you are manipulating is in the shared
repository (a group object), or is a local copy on page set zero (a queue manager
object).

You do not have to specify the command scope and object disposition to work
with a shared queue because every queue manager in the queue-sharing group
sees the shared queue as a single queue.

Administrator commands
The following tables summarize the commands that are available on MQSeries for
OS/390 to manage MQSeries objects.

Table 11. Summary of MQSeries administrator commands

ALTER CLEAR DEFINE DISPLAY DELETE MOVE

CHANNEL U U U U

NAMELIST U U U U

PROCESS U U U U

QALIAS U U U U

QCLUSTER U

QLOCAL U U U U U U

QMGR U U

QMODEL U U U U

QREMOTE U U U U

QUEUE U

STGCLASS U U U U

Creating and managing objects

Chapter 9. Creating and managing objects 75

System control commands
You can use the system control commands to manage other MQSeries resources,
such as page sets and buffer pools. Table 12 summarizes the MQSeries system
control commands.

Table 12. System control commands

Resource Task Command

BSDS Re-establish a dual bootstrap data set that had a
data set error

RECOVER BSDS

Buffer pools Define a buffer pool and the number of 4 KB
buffers that it contains

DEFINE BUFFPOOL

Channels Start a channel START CHANNEL

Stop a channel STOP CHANNEL

Test a channel PING CHANNEL

Reset channel sequence numbers RESET CHANNEL

Resolve in-doubt messages on a channel RESOLVE CHANNEL

Display channel status information DISPLAY CHSTATUS

Channel
initiators

Start a channel initiator START CHINIT

Stop a channel initiator STOP CHINIT

Display information about channel initiators DISPLAY DQM

Channel
listeners

Start a channel listener START LISTENER

Stop a channel listener STOP LISTENER

Clusters Refresh locally-held cluster information REFRESH CLUSTER

Perform special cluster operations RESET CLUSTER

Join a cluster RESUME QMGR

Leave a cluster SUSPEND QMGR

Display cluster information about the queue
managers in a cluster

DISPLAY CLUSQMGR

Command
servers

Start the command server START CMDSERV

Stop the command server STOP CMDSERV

Display command server attributes DISPLAY CMDSERV

IMS Tpipes Reset sequence numbers for an IMS transaction
pipe

RESET TPIPE

Logs Copy the current active log to an archive log ARCHIVE LOG

Set logging parameters SET LOG

Display logging parameters DISPLAY LOG

Page sets Define a page set and an associated buffer pool DEFINE PSID

Display the current state of a page set DISPLAY USAGE

Queues Display who is using a queue DISPLAY QSTATUS

Display and reset queue statistics RESET QSTATS

Creating and managing objects

76 Concepts and Planning Guide

Table 12. System control commands (continued)

Resource Task Command

Queue
managers

Start a queue manager START QMGR

Stop a queue manager STOP QMGR

Define the maximum number of messages that
a task can get or put within a single unit of
recovery

DEFINE MAXSMSGS

Display the setting of MAXSMSGS DISPLAY MAXSMSGS

Queue-
sharing
groups

Display information about a queue-sharing
group

DISPLAY GROUP

Security Refresh in-storage ESM tables REFRESH SECURITY

Request security reverification for a user RVERIFY SECURITY

Change security settings ALTER SECURITY

Display security settings DISPLAY SECURITY

Threads Display information about threads DISPLAY THREAD

Resolve in-doubt units of recovery manually RESOLVE INDOUBT

Traces Start an MQSeries trace START TRACE

Stop an MQSeries trace STOP TRACE

Alter MQSeries trace settings ALTER TRACE

Display MQSeries trace settings DISPLAY TRACE

Initialization commands
Commands in the initialization input data sets are processed when MQSeries is
initialized on MQSeries startup. Three types of command can be issued from the
initialization input data sets:
v Commands to define MQSeries entities that cannot be recovered (DEFINE

BUFFPOOL and DEFINE PSID for example)
These commands must reside in the data set identified by the DDname
CSQINP1. They are processed before the restart phase of initialization. They
cannot be issued through the console, operations and control panels, or an
application program. The responses to these commands are written to the
sequential data set that you refer to in the CSQOUT1 statement of the started
task procedure.

v Commands to define MQSeries objects that are recoverable after restart. These
definitions must be specified in the data set identified by the DDname CSQINP2.
They are stored in page set zero. CSQINP2 is processed after the restart phase of
initialization. The responses to these commands are written to the sequential
data set that you refer to in the CSQOUT2 statement of the started task
procedure.

v Commands to manipulate MQSeries objects. These commands must also be
specified in the data set identified by the DDname CSQINP2. For example, the
MQSeries-supplied data set CSQ4INP2 contains an ALTER QMGR command to
specify a dead-letter queue for the subsystem. The response to these commands
is written to the CSQOUT2 output data set.

Note: If MQSeries objects are defined in CSQINP2, MQSeries attempts to redefine
them each time the MQSeries subsystem is started. If the queues already

Creating and managing objects

Chapter 9. Creating and managing objects 77

exist, the attempt to define them fails. If you need to define your objects in
CSQINP2, you can avoid this problem by using the REPLACE parameter of
the DEFINE commands, however, this will override any changes that were
made during the previous run of the queue manager.

Sample initialization data set members are supplied with MQSeries for OS/390.
They are described in “Sample definitions supplied with MQSeries” on page 45.

Initialization commands for distributed queuing
You can also use the CSQINP2 initialization data set for the START CHINIT
command, and follow it with a series of other commands to define your
distributed queuing environment (for example, defining your channels). If you stop
and restart the channel initiator however, CSQINP2 is not reprocessed, so
MQSeries provides a third initialization input data set, called CSQINPX, that you
can choose to process as part of the channel initiator started task procedure.

The MQSC commands contained in the data set are executed at the end of channel
initiator initialization, and output is written to the data set specified by the
CSQOUTX DD statement. You might use the CSQINPX initialization data set to
start listeners for example.

A sample channel initiator initialization data set member is supplied with
MQSeries for OS/390. It is described in “Sample definitions supplied with
MQSeries” on page 45.

Creating and managing objects

78 Concepts and Planning Guide

The MQSeries for OS/390 utilities
MQSeries for OS/390 supplies a set of utility programs to help you perform
various administrative tasks. These utilities:
v Perform backup, restoration, and reorganization tasks
v Issue commands and process object definitions
v Generate data-conversion exits
v Modify the bootstrap data set
v List information about the logs
v Print the logs
v Set up DB2 tables and other DB2 utilities
v Process messages on the dead-letter queue

The CSQUTIL utility
The CSQUTIL utility program is provided with MQSeries for OS/390 to help you
perform backup, restoration, and reorganization tasks, and to issue commands and
process object definitions. Through this utility program, you can invoke the
following functions:

COMMAND
To issue MQSC commands, to record object definitions, and to make
client-channel definition files.

COPY To read the contents of a named MQSeries for OS/390 message queue or
the contents of all the queues of a named page set, and put them into a
sequential file and retain the original queue.

COPYPAGE
To copy whole page sets to larger page sets.

EMPTY
To delete the contents of a named MQSeries for OS/390 message queue or
the contents of all the queues of a named page set, retaining the definitions
of the queues.

FORMAT
To format MQSeries for OS/390 page sets.

LOAD
To restore the contents of a named MQSeries for OS/390 message queue or
the contents of all the queues of a named page set from a sequential file
created by the COPY function.

RESETPAGE
To copy whole page sets to other page set data sets and reset the log
information in the copy.

SCOPY
To copy the contents of a queue to a data set while the queue manager is
offline.

SDEFS
To produce a set of define commands for objects while the queue manager
is offline.

The data conversion exit utility
The MQSeries for OS/390 data conversion exit utility (CSQUCVX) runs as a
stand-alone utility to create data conversion exit routines.

Creating and managing objects

Chapter 9. Creating and managing objects 79

The change log inventory utility
The MQSeries for OS/390 change log inventory utility program (CSQJU003) runs
as a stand-alone utility to change the bootstrap data set (BSDS). The utility can be
used to:
v Add or delete active or archive log data sets
v Supply passwords for archive logs

The print log map utility
The MQSeries for OS/390 print log map utility program (CSQJU004) runs as a
stand-alone utility to list the following information:
v Log data set name and log RBA association for both copies of all active and

archive log data sets. If dual logging is not active, there is only one copy of the
data sets.

v Active log data sets available for new log data.
v Contents of the queue of checkpoint records in the bootstrap data set (BSDS).
v Contents of the archive log command history record.
v System and utility time stamps.

The log print utility
The log print utility program (CSQ1LOGP) is run as a stand-alone utility. You can
run the utility specifying:
v A bootstrap data set (BSDS)
v Active logs (with no BSDS)
v Archive logs (with no BSDS)

The queue-sharing group utility
The queue-sharing group utility program (CSQ5PQSG) runs as a stand-alone utility
to set up DB2 tables and perform other DB2 tasks required for queue-sharing
groups.

The dead-letter queue handler utility
The dead-letter queue handler utility program (CSQUDLQH) runs as a stand-alone
utility. It checks messages that are on the dead-letter queue and processes them
according to a set of rules that you supply to the utility.

Creating and managing objects

80 Concepts and Planning Guide

Where to find more information
You can find more information about the topics discussed in this chapter from the
following sources:

Table 13. Where to find more information about creating and managing objects

Topic Where to look

Using initialization input data sets
System parameter macros
Installation verification program

MQSeries for OS/390 System Setup Guide

Writing administration programs
Operations and control panels
Utility programs

MQSeries for OS/390 System Administration
Guide

Queue indexes
MQSeries commands

MQSeries MQSC Command Reference

MQSeries clusters MQSeries Queue Manager Clusters

MQSeries events MQSeries Event Monitoring

Creating and managing objects

Chapter 9. Creating and managing objects 81

Creating and managing objects

82 Concepts and Planning Guide

Chapter 10. Monitoring and statistics

MQSeries supplies facilities for monitoring the system and collecting statistics.
These are discussed in the following sections:
v “MQSeries trace”
v “Events”
v “Where to find more information” on page 84

MQSeries trace
MQSeries supplies a trace facility that can be used to gather the following
information while MQSeries is running:

Performance statistics
The statistics trace gathers the following information to help you monitor
performance and tune your system:
v Counts of different MQI requests (message manager statistics)
v Counts of different object requests (data manager statistics)
v Information about DB2 usage (DB2 manager statistics)
v Information about Coupling Facility usage (Coupling Facility manager

statistics)
v Information about buffer pool usage (buffer manager statistics)
v Information about logging (log manager statistics)
v Information about storage usage (storage manager statistics)
v Information about lock requests (lock manager statistics)

Accounting data

v The accounting trace gathers information about the CPU time spent
processing MQI calls and about the number of MQPUT and MQGET
requests made by a particular user.

v MQSeries can also gather information about each task using MQSeries.
This data is gathered as a thread-level accounting record. For each
thread, MQSeries also gathers information about each queue used by
that thread.

The data generated by the trace is sent to the System Management Facility (SMF)
or the generalized trace facility (GTF).

Events
MQSeries events provide information about errors, warnings, and other significant
occurrences in a queue manager. By incorporating these events into your own
system management application, you can monitor the activities across many queue
managers, for multiple MQSeries applications. In particular, you can monitor all
the queue managers in your system from a single queue manager.

Events can be reported through a user-written reporting mechanism to an
administration application that supports the presentation of the events to an
operator. Events also enable applications acting as agents for other administration
networks, for example NetView, to monitor reports and create the appropriate
alerts.

© Copyright IBM Corp. 1993, 2000 83

Where to find more information
You can find more information about the topics discussed in this chapter from the
following sources:

Table 14. Where to find more information about monitoring and statistics

Topic Where to look

MQSeries trace MQSeries for OS/390 System Setup Guide

Trace commands MQSeries MQSC Command Reference

MQSeries events MQSeries Event Monitoring

Monitoring and statistics

84 Concepts and Planning Guide

Part 3. MQSeries and other products

Chapter 11. MQSeries and CICS 87
The CICS adapter 87

Control functions 88
MQI support 88
Adapter components 88
Alert monitor. 90
Auto-reconnect 90
Task initiator 90
Multi-tasking 91
The API-crossing exit 91
CICS adapter conventions 92

Temporary storage queue names 92
MQGET 92
ENQUEUE names 92

The CICS bridge. 93
When to use the CICS bridge 93

System configuration for the CICS bridge . . 93
Running CICS DPL programs 94
Running CICS 3270 transactions 95

Where to find more information 97

Chapter 12. MQSeries and IMS 99
The IMS adapter. 99

Using the adapter 100
System administration and operation with IMS 100
The IMS trigger monitor. 100

How it works 100
The IMS bridge. 101

What is OTMA? 102
Submitting IMS transactions from MQSeries . . 102

Where to find more information 102

Chapter 13. MQSeries and OS/390 Batch and
TSO 103
Introduction to the Batch adapters 103
The Batch/TSO adapter 104
The RRS adapter 104
Where to find more information 104

© Copyright IBM Corp. 1993, 2000 85

86 Concepts and Planning Guide

Chapter 11. MQSeries and CICS

This chapter discusses how MQSeries works with CICS. The CICS adapter and the
CICS bridge allow you to connect your MQSeries subsystem to CICS.
v The CICS adapter enables CICS applications to use the MQI.
v The CICS bridge enables applications to run a CICS program or transaction that

does not use the MQI. This means that you can use your legacy applications
with MQSeries, without the need to rewrite them.

These topics are described in the following sections:
v “The CICS adapter”
v “The CICS bridge” on page 93
v “Where to find more information” on page 97

The CICS adapter
The CICS adapter connects a CICS subsystem to an MQSeries subsystem, enabling
CICS application programs to use the MQI.

You can start and stop CICS and MQSeries independently, and you can establish or
terminate a connection between them at any time. You can also allow CICS to
connect to MQSeries automatically.

The CICS adapter provides two main facilities:
v A set of control functions for use by system programmers and administrators to

manage the adapter.
v MQI support for CICS applications.

In a CICS multiregion operation or intersystem communication (ISC) environment,
each CICS address space can have its own attachment to the queue manager
subsystem. A single CICS address space can be connected to only one queue
manager at a time. However, multiple CICS address spaces can connect to the
same MQSeries subsystem.

You can use MQSeries with the CICS Extended Recovery Facility (XRF) to aid
recovery from a CICS error.

The CICS adapter is supplied with MQSeries and runs as a CICS External Resource
Manager. MQSeries also provides CICS transactions to manage the interface.

The CICS adapter uses standard CICS command-level services where required, for
example, EXEC CICS WAIT and EXEC CICS ABEND. A portion of the CICS
adapter runs under the control of the transaction issuing the messaging requests.
Therefore, these calls for CICS services appear to be issued by the transaction.

© Copyright IBM Corp. 1993, 2000 87

Control functions
The CICS adapter’s control functions (the CKQC transaction) let you manage the
connections between CICS and MQSeries dynamically. These functions can be
invoked using the CICS adapter panels, from the command line, or from a CICS
application. You can use the adapter’s control function to:
v Start or stop a connection to a queue manager.
v Modify the current connection. For example, you can reset the connection

statistics, change the adapter’s trace ID number, and enable or disable the
API-crossing exit.

v Display the current status of a connection and the statistics associated with that
connection.

v Start or stop an instance of the task initiator transaction, CKTI. (“Task initiator
transaction” is CICS terminology; in MQSeries terminology, this is a trigger
monitor.)

v Display details of the current instances of CKTI.
v Display details of the CICS tasks currently using the adapter.

These functions and the different methods of invoking them are described in the
MQSeries for OS/390 System Administration Guide.

MQI support
The CICS adapter implements the MQI for use by CICS application programs. The
MQI calls, and how they are used, are described in the MQSeries Application
Programming Guide. The adapter also supports an API-crossing exit, (see “The
API-crossing exit” on page 91), and a trace facility.

All application programs that run under CICS must have the supplied API stub
program called CSQCSTUB link-edited with them if they are to access MQSeries,
unless the program is using dynamic calls. This stub provides the application with
access to all MQI calls. (For information about calling the CICS stub dynamically,
see the MQSeries Application Programming Guide.)

For performance, the CICS adapter can handle up to eight MQI calls concurrently.
For transaction integrity, the adapter supports syncpointing under the control of
the CICS syncpoint manager, so that units of work can be committed or backed out
as required. The adapter also supports security checking of MQSeries resources
when used with an appropriate security management product, such as RACF. The
adapter provides high availability with automatic reconnection after an MQSeries
termination, and automatic resource resynchronization after a restart. It also
features an alert monitor that responds to unscheduled events such as a shut down
of the MQSeries subsystem.

Adapter components
Figure 15 on page 89 shows the relationship between CICS, the CICS adapter, and
an MQSeries subsystem. CICS and the adapter share the same address space; the
MQSeries for OS/390 is a separate OS/390 subsystem, executing in its own
address space.

Part of the adapter is a CICS task-related user exit that communicates with the
MQSeries message manager. CICS management modules call the exit directly;
application programs call it through the supplied API stub program (CSQCSTUB).
Task-related user exits and stub programs are described in the CICS Customization
Guide.

MQSeries and CICS

88 Concepts and Planning Guide

Each CKTI transaction is normally in an MQGET WAIT state, ready to respond to
any trigger messages that are placed on its initiation queue.

The adapter management interface provides the operation and control functions
described in the MQSeries for OS/390 System Administration Guide.

MQSeries
for OS/390

Message
manager

Connection
manager

CICS system

PLT
startup program

CKQC

CKTI

API stub

Task initiation
transaction

Task-related
user exit

Subtask
TCB

Adapter
management

Application
programs

API stub

CICS
syncpoint manager

CICS
task manager

CICS
termination

Figure 15. How CICS, the CICS adapter, and an MQSeries subsystem are related

MQSeries and CICS

Chapter 11. MQSeries and CICS 89

Alert monitor
The alert monitor transaction, CKAM, handles unscheduled events—known as
pending events—that occur as a result of connect requests to instances of MQSeries.
The alert monitor generates messages that are sent to the system console.

There are two kinds of pending events:

1. Deferred connection
If CICS tries to connect to MQSeries before MQSeries is started, a pending
event called a deferred connection is activated. When MQSeries is started, a
connection request is issued by the CICS adapter, a connection is made,
and the pending event is canceled.

There can be multiple deferred connections, one of which will be
connected when MQSeries is started.

2. Termination notification
When a connection is successfully made to MQSeries, a pending event
called termination notification is created. This pending event expires when:
v MQSeries shuts down normally with MODE(QUIESCE). The alert

monitor issues a quiesce request on the connection.
v MQSeries shuts down with MODE(FORCE) or terminates abnormally.

After an abnormal termination, the CICS adapter waits for ten seconds
and then tries a connect call. This enables the CICS system to be
automatically reconnected to the queue manager when the latter is
restarted.

v The connection is shut down from the CKQC transaction.

The maximum number of pending events that can be handled is 99. If this limit is
reached, no more events can be created until at least one current event expires.

The alert monitor terminates itself when all pending events have expired. It is
subsequently restarted automatically by any new connect request.

Auto-reconnect
When CICS is connected to MQSeries and MQSeries terminates, the CICS adapter
tries to issue a connect request ten seconds after the stoppage has been detected.
This request uses the same connect parameters that were used in the previous
connect request. If MQSeries has not been restarted within the ten seconds, the
connect request is deferred until MQSeries is restarted later.

Task initiator
CKTI is an MQSeries-supplied CICS transaction that starts a CICS transaction
when an MQSeries trigger message is read, for example when a message is put
onto a specific queue.

When a message is put onto an application message queue, a trigger is generated
if the trigger conditions are met. The queue manager then writes a message,
containing user-defined data, known as a trigger message, to the initiation queue
that has been specified for that message queue. In a CICS environment, an instance
of CKTI can be set up to monitor an initiation queue and to retrieve the trigger
messages from it as they arrive. CKTI starts another CICS transaction, (specified
using the DEFINE PROCESS command), which typically reads the message from
the application message queue and then processes it. The process must be named
on the application queue definition, not the initiation queue.

MQSeries and CICS

90 Concepts and Planning Guide

Each copy of CKTI services a single initiation queue. To start or stop a copy of
CKTI, you must supply the name of the queue that this CKTI is to serve, or is
serving. You cannot start more than one instance of CKTI against the same
initiation queue from a single CICS subsystem.

At CICS system initialization or at connect time, you can define a default initiation
queue. If you issue a STARTCKTI or a STOPCKTI command without specifying an
initiation queue, these commands are automatically interpreted as referring to the
default initiation queue.

Notes:

1. If you are using version 4.1 of CICS, any transaction entries processed by CKTI,
for example EXEC CICS START, are locked by the CKTI task until it terminates.
Any attempt to CEDA INSTALL such entries after altering them will fail:
CEDA rejects the install request because the transaction entry is being used by
another task.
In this situation, you must stop the CKTI task using the CICS adapter, and
restart it after the CEDA install.

2. This restriction also applies to intersystem connection (ISC) and multi-region
operation (MRO) links. For example, if CKTI has started a remote transaction, a
connection cannot be reinstalled until CKTI has been stopped.

Multi-tasking
The CICS adapter optimizes the performance of a CICS to MQSeries connection by
exploiting multi-processors and by removing work from the main CICS task
control block (TCB), allowing multiple MQI calls to be handled concurrently.

The adapter enables some MQI calls to be executed under subtasks, rather than
under the main CICS TCB that runs the application code. All the CICS adapter
administration code, including connection and disconnection from MQSeries, runs
under the main CICS TCB.

The adapter tries to attach up to eight OS/390 subtasks (TCBs) to be used by this
CICS system. You cannot modify this number. Each subtask makes a connect call to
MQSeries. Each CICS system connected takes up nine of the connections specified
on the CTHREAD system parameter. This means that you must increase the value
specified for CTHREAD by nine for each CICS system connected. MQI calls can
flow over those connections. When the main connection is terminated, the subtasks
are disconnected and terminated automatically.

The API-crossing exit
MQSeries provides an API-crossing exit for use with the CICS adapter; it runs in
the CICS address space. You can use this exit to intercept MQI calls as they are
being run, for monitoring, testing, maintenance, or security purposes.

Using the API-crossing exit degrades MQSeries performance. You should plan your
use of it carefully.

MQSeries and CICS

Chapter 11. MQSeries and CICS 91

CICS adapter conventions
There are a number of conventions that must be observed in applications using the
adapter.

Temporary storage queue names
The CICS adapter display function uses two temporary storage queues (MAIN) per
invoking task to store the output data for browsing. The names of the queues are
ttttCKRT and ttttCKDP, where tttt is the terminal identifier of the terminal from
which the display function is requested.

Do not try to access these queues.

MQGET
When the CICS adapter puts a task on a CICS wait because the WAIT option was
used with the MQGET call and there was no message available, the RESOURCE
NAME used is GETWAIT and the RESOURCE_TYPE is MQSeries.

When the CICS adapter puts a task on a CICS wait because of a need to perform
task switching the RESOURCE NAME used is TASKSWCH and the
RESOURCE_TYPE is MQSeries.

ENQUEUE names
The CICS adapter uses the name:
CSQ.genericapplid(8).QMGR

to issue CICS ENQ and CICS DEQ calls during processing, for example, starting
and stopping the connection.

You should not use similar names for CICS ENQ or DEQ purposes.

MQSeries and CICS

92 Concepts and Planning Guide

The CICS bridge
The MQSeries-CICS bridge is the component of MQSeries for OS/390 that allows
direct access from MQSeries applications to applications on your CICS system. In
bridge applications there are no MQSeries calls within the CICS application (the
bridge enables implicit MQI support). This means that you can re-engineer legacy
applications that were controlled by 3270-connected terminals to be controlled by
MQSeries messages, without having to rewrite, recompile, or re-link them.

MQSeries applications use the CICS header (the MQCIH structure) in the message
data to ensure that the applications can execute as they did when driven by
nonprogrammable terminals.

The bridge enables an application that is not running in a CICS environment to
run a program or transaction on CICS and get a response back. This non-CICS
application can be run from any environment that has access to an MQSeries
network that encompasses MQSeries for OS/390.

A program is a CICS program that can be invoked using the EXEC CICS LINK
command. It must conform to the DPL subset of the CICS API, that is, it must not
use CICS terminal or syncpoint facilities.

A transaction is a CICS transaction designed to run on a 3270 terminal. This
transaction can use BMS or TC commands. It can be conversational or part of a
pseudoconversation. It is permitted to issue syncpoints. For information about the
transactions that can be run, see the CICS Internet and External Interfaces Guide.

When to use the CICS bridge
The CICS bridge allows an application to run a single CICS program or a ‘set’ of
CICS programs (often referred to as a unit of work). It caters for the application
that waits for a response to come back before it runs the next CICS program
(synchronous processing) and for the application that requests one or more CICS
programs to run, but doesn’t wait for a response (asynchronous processing).

The CICS bridge also allows an application to run a 3270-based CICS transaction,
without knowledge of the 3270 data stream.

The CICS bridge uses standard CICS and MQSeries security features and can be
configured to authenticate, trust, or ignore the requestor’s user ID.

Given this flexibility, there any many instances where the CICS bridge can be used.
For example, when you want:
v To write a new MQSeries application that needs access to logic or data (or both)

that reside on your CICS server.
v To be able to run CICS programs from a Lotus Notes application.
v To be able to access your CICS applications from

– Your MQSeries Classes for Java client application
– A web browser using the MQSeries Internet gateway

System configuration for the CICS bridge
When you are setting your system up, you should ensure that:
v Both MQSeries and CICS are running in the same OS/390 image.
v The MQSeries request queue is local to the CICS bridge, however the response

queue can be local or remote.

MQSeries and CICS

Chapter 11. MQSeries and CICS 93

v The CICS bridge tasks run in the same CICS as the bridge monitor. The user
programs can be in the same or a different CICS system.

v The MQSeries-CICS adapter is enabled.

Running CICS DPL programs
Data necessary to run the program is provided in the MQSeries message. The
bridge builds a COMMAREA from this data, and runs the program using EXEC
CICS LINK. Figure 16 shows the step sequence taken to process a single message
to run a CICS DPL program:

The following takes each step in turn, and explains what takes place:
1. A message, with a request to run a CICS program, is put on the request queue.
2. The CICS bridge monitor task, which is constantly browsing the queue,

recognizes that a ‘start unit of work’ message is waiting
(CorrelId=MQCI_NEW_SESSION).

3. Relevant authentication checks are made, and a CICS DPL bridge task is started
with the appropriate authority.

4. The CICS DPL bridge task removes the message from the request queue.
5. The CICS DPL bridge task builds a COMMAREA from the data in the message

and issues an EXEC CICS LINK for the program requested in the message.
6. The program returns the response in the COMMAREA used by the request.

OS/390

CICSMQSeries

user
program

CICS LINK
5.EXEC

CICS RETURN
6.EXEC

bridge
task

CICS DPL

STARTCICS

3.EXEC

queue
Transmission

queue

Request

request
4.MQGET

7.MQPUT
response

request
browse

2.MQGET

message
1.request

message
response

client
server or
MQSeries

monitor
bridge
CICS

Figure 16. Components and data flow to run a CICS DPL program

MQSeries and CICS

94 Concepts and Planning Guide

7. The CICS DPL bridge task reads the COMMAREA, creates a message, and puts
it on the reply-to queue specified in the request message. All response messages
(normal and error, requests and replies) are put to the reply-to queue with
default context.

8. The CICS DPL bridge task ends.

A unit of work can be just a single user program, or it can be multiple user
programs. There is no limit to the number of messages you can send to make up a
unit of work.

In this scenario, a unit of work made up of many messages works in the same
way, with the exception that the CICS bridge task waits for the next request
message in the final step unless it is the last message in the unit of work.

Running CICS 3270 transactions
Data necessary to run the transaction is provided in the MQSeries message. The
CICS transaction runs as if it has a real 3270 terminal, but instead uses one or more
MQ messages to communicate between the CICS transaction and the MQSeries
application

Unlike traditional 3270 emulators, the bridge does not work by replacing the
VTAM flows with MQSeries messages. Instead, the message consists of a number
of parts called vectors, each of which corresponds to an EXEC CICS request.
Therefore the application is talking directly to the CICS transaction, rather than via
an emulator, using the actual data used by the transaction (known as application
data structures or ADSs).

Figure 17 on page 96 shows the step sequence taken to process a single message to
run a CICS 3270 transaction.

The following takes each step in turn, and explains what takes place:
1. A message, with a request to run a CICS transaction, is put on the request

queue.
2. The CICS bridge monitor task, which is constantly browsing the queue,

recognizes that a ‘start unit of work’ message is waiting
(CorrelId=MQCI_NEW_SESSION).

3. Relevant authentication checks are made, and a CICS 3270 bridge task is started
with the appropriate authority.

4. The MQ-CICS bridge exit removes the message from the queue and changes
task to run a user transaction

5. Vectors in the message provide data to answer all terminal related input EXEC
CICS requests in the transaction.

6. Terminal related output EXEC CICS requests result in output vectors being
built.

7. The MQ-CICS bridge exit builds all the output vectors into a single message
and puts this on the reply-to queue.

8. The CICS 3270 bridge task ends.

Note: The CICS bridge exit is an MQSeries supplied CICS exit associated with the
bridge transaction.

MQSeries and CICS

Chapter 11. MQSeries and CICS 95

A traditional CICS application usually consists of one or more transactions linked
together as a pseudoconversation. In general, each transaction is started by the
3270 terminal user entering data onto the screen and pressing an AID key. This
model of application can be emulated by an MQSeries application. A message is
built for the first transaction, containing information about the transaction, and
input vectors. This is put on the queue. The reply message will consist of the
output vectors, the name of the next transaction to be run, and a token that is used
to represent the pseudoconversation. The MQSeries application builds a new input
message, with the transaction name set to the next transaction and the facility
token set to the value returned on the previous message. Vectors for this second
transaction are added to the message, and the message put on the queue. This
process is continued until the application ends.

An alternative approach to writing CICS applications is the conversational model.
In this model, the original message might not contain all the data to run the
transaction. If the transaction issues a request that cannot be answered by any of
the vectors in the message, a message is put onto the reply-to queue requesting
more data. The MQSeries application gets this message and puts a new message
back to the queue with a vector to satisfy the request.

For more information about this, see the CICS Internet and External Interfaces Guide.

OS/390

CICSMQSeries

bridge exit
MQ - CICS

request
4.MQGET

7.MQPUT
response

request
browse

2.MQGET
monitor
bridge
CICS

task
3270 bridge

CICS

transaction
User

message
1. Request

Response
message

queue
Transmission

queue
Request

client
server or
MQSeries

3.EXEC
CICS
START

5

6

Figure 17. Components and data flow to run a CICS 3270 transaction

MQSeries and CICS

96 Concepts and Planning Guide

Where to find more information
You can find more information about the topics discussed in this chapter from the
following sources:

Table 15. Where to find more information about using CICS with MQSeries

Topic Where to look

System parameters
Setting up the CICS adapter
Setting up the CICS bridge

MQSeries for OS/390 System Setup Guide

Operating the CICS adapter
Operating the CICS bridge

MQSeries for OS/390 System Administration
Guide

Console messages MQSeries for OS/390 Messages and Codes

Writing CICS applications
API-crossing exit

MQSeries Application Programming Guide

Writing CICS bridge applications CICS Internet and External Interfaces Guide

MQSeries and CICS

Chapter 11. MQSeries and CICS 97

MQSeries and CICS

98 Concepts and Planning Guide

Chapter 12. MQSeries and IMS

This chapter discusses how MQSeries works with IMS. The IMS adapter and the
IMS bridge allow you to connect your MQSeries subsystem to IMS.
v The IMS adapter enables IMS applications to use the MQI.
v The IMS bridge enables applications to run an IMS application that does not use

the MQI. This means that you can use your legacy applications with MQSeries,
without the need to rewrite them.

These topics are described in the following sections:
v “The IMS adapter”
v “The IMS bridge” on page 101
v “Where to find more information” on page 102

The IMS adapter
The MQSeries adapters enable different application environments to send and
receive messages through a message queuing network. The IMS adapter is the
interface between IMS application programs and an MQSeries subsystem. It makes
it possible for IMS application programs to use the MQI.

The IMS adapter receives and interprets requests for access to MQSeries using the
External Subsystem Attach Facility (ESAF) provided by IMS. This facility is
described in the IMS Customization Guide. Usually, IMS connects to MQSeries
automatically without operator intervention.

The IMS adapter provides access to MQSeries resources for programs running in:
v Task (TCB) mode
v Problem state
v Non-cross-memory mode
v Non-access register mode

The adapter provides a connection thread from an application task control block
(TCB) to MQSeries.

The adapter supports a two-phase commit protocol for changes made to resources
owned by MQSeries with IMS acting as the syncpoint coordinator.

The adapter also provides a trigger monitor transaction (CSQQTRMN). This is
described in “The IMS trigger monitor” on page 100.

You can use MQSeries with the IMS Extended Recovery Facility (XRF) to aid
recovery from a IMS error. For more information about XRF, see the IMS
Administration Guide: System manual.

© Copyright IBM Corp. 1993, 2000 99

Using the adapter
The application programs and the IMS adapter run in the same address space.
MQSeries for OS/390 is a separate OS/390 subsystem, in its own address space.

Each program that issues one or more MQI calls must be link-edited to a suitable
IMS language interface module, and, unless it uses dynamic MQI calls, the
MQSeries-supplied API stub program, CSQQSTUB. When the application issues an
MQI call, the stub transfers control to the adapter through the IMS external
subsystem interface, which manages the processing of the request by the message
queue manager.

System administration and operation with IMS
An authorized IMS terminal operator can issue IMS commands to control and
monitor the connection to MQSeries. However, the IMS terminal operator has no
control over the MQSeries address space. For example, the operator cannot shut
down MQSeries from an IMS address space.

The IMS trigger monitor
The IMS trigger monitor (CSQQTRMN) is an MQSeries-supplied IMS application
that starts an IMS transaction when an MQSeries event occurs, for example, when
a message is put onto a specific queue.

How it works
When a message is put onto an application message queue, a trigger is generated
if the trigger conditions are met. The queue manager then writes a message
(containing some user-defined data), known as a trigger message, to the initiation
queue that has been specified for that message queue. In an IMS environment, an
instance of CSQQTRMN can be started to monitor an initiation queue and to
retrieve the trigger messages from it as they arrive. Typically, CSQQTRMN
schedules another IMS transaction by an INSERT (ISRT) to the IMS message queue.
The started IMS application reads the message from the application message queue
and then processes it. CSQQTRMN must run as a non-message BMP.

Each copy of CSQQTRMN services a single initiation queue. Once started, the
trigger monitor runs until MQSeries or IMS ends.

The APPLCTN macro for CSQQTRMN must specify SCHDTYP=PARALLEL.

Because the trigger monitor is a batch-oriented BMP, IMS transactions started by
the trigger monitor will contain:
v Blanks in the LTERM field of the IOPCB
v The PSB name of the trigger monitor BMP in the Userid field of the IOPCB

If the target IMS transaction is RACF protected, you might need to define
CSQQTRMN as a user ID to RACF.

MQSeries and IMS

100 Concepts and Planning Guide

The IMS bridge
The MQSeries-IMS bridge is the component of MQSeries for OS/390 that allows
direct access from MQSeries applications to applications on your IMS system (the
bridge enables implicit MQI support). This means that you can re-engineer legacy
applications that were controlled by 3270-connected terminals to be controlled by
MQSeries messages, without having to rewrite, recompile, or re-link them. The
bridge is an IMS Open Transaction Manager Access (OTMA) client.

In bridge applications there are no MQSeries calls within the IMS application. The
application gets its input using a GET UNIQUE (GU) to the IOPCB and sends its
output using an ISRT to the IOPCB. MQSeries applications use the IMS header (the
MQIIH structure) in the message data to ensure that the applications can execute
as they did when driven by nonprogrammable terminals. If you are using an IMS
application that processes multi-segment messages, note that all segments should
be contained within one MQSeries message.

The IMS bridge is illustrated in Figure 18.

A queue manager can connect to one or more IMS systems, and more than one
queue manager can connect to one IMS system. The only restriction is that they
must all belong to the same XCF group and must all be in the same sysplex.

Bridge

Storage Classes

MQSeries

IMS
TP

IOPCB

IMS/ESA

O
T
M
A

IMS
TP

IOPCB

IMS/ESA

O
T
M
A

XCF

XCF

XCF Group

Figure 18. The MQSeries-IMS bridge

MQSeries and IMS

Chapter 12. MQSeries and IMS 101

What is OTMA?
The IMS OTMA facility is a transaction-based connectionless client/server protocol
that runs on IMS Version 5.1 or later. It functions as an interface for host-based
communications servers accessing IMS TM applications through the OS/390 Cross
Systems Coupling Facility (XCF).

OTMA enables clients to connect to IMS in a high performance manner enabling
the client to support interactions with IMS for a large network or large number of
sessions. OTMA is implemented in an OS/390 sysplex environment. Therefore, the
domain of OTMA is restricted to the domain of XCF.

Submitting IMS transactions from MQSeries
To submit an IMS transaction that uses the bridge, applications put messages on an
MQSeries queue as usual. The messages contain IMS transaction data; they can
have an IMS header (the MQIIH structure) or allow the MQSeries-IMS bridge to
make assumptions about the data in the message.

MQSeries then puts the message to an IMS queue (it is queued in MQSeries first to
enable the use of syncpoints to assure data integrity). The storage class of the
MQSeries queue determines whether the queue is an OTMA queue (that is, a queue
used to transmit messages to the MQSeries-IMS bridge) and the particular IMS
partner to which the message data is sent.

Remote queue managers can also start IMS transactions by writing to these OTMA
queues on MQSeries for OS/390.

Data returned from the IMS system is written directly to the MQSeries reply-to
queue specified in the message descriptor structure (MQMD). (This might be a
transmission queue to the queue manager specified in the ReplyToQMgr field of the
MQMD.)

Where to find more information
You can find more information about the topics discussed in this chapter from the
following sources:

Table 16. Where to find more information about using IMS with MQSeries

Topic Where to look

Setting up the IMS adapter
Setting up the IMS bridge

MQSeries for OS/390 System Setup Guide

Operating the IMS adapter
Operating the IMS bridge

MQSeries for OS/390 System Administration
Guide

Console messages MQSeries for OS/390 Messages and Codes

Writing IMS applications MQSeries Application Programming Guide

IMS Open Transaction Manager Access
(OTMA)

IMS/ESA Open Transaction Manager Access
Guide

MQIIH structure MQSeries Application Programming Reference

MQSeries and IMS

102 Concepts and Planning Guide

Chapter 13. MQSeries and OS/390 Batch and TSO

This chapter discusses how MQSeries works with OS/390 Batch and TSO. It
contains the following sections:
v “Introduction to the Batch adapters”
v “The Batch/TSO adapter” on page 104
v “The RRS adapter” on page 104
v “Where to find more information” on page 104

Introduction to the Batch adapters
The Batch/TSO adapters are the interface between OS/390 application programs
running under JES, TSO, or UNIX System Services and an MQSeries subsystem.
They enable OS/390 application programs to use the MQI.

The adapters provide access to MQSeries resources for programs running in:
v Task (TCB) mode
v Problem or supervisor state
v Non-cross-memory mode
v Non-access register mode

There is one MQSeries address space and there are allied address spaces for each
environment in which the applications run. Each TSO user and each batch
program has its own allied address space.

Connections between application programs and MQSeries are at the task level. The
adapters provide a connection thread from an application task control block (TCB)
to MQSeries.

The Batch/TSO adapter supports a single-phase commit protocol for changes made
to resources owned by MQSeries. It does not support multi-phase commit
protocols. The RRS adapter enables MQSeries applications to participate in
two-phase commit protocols with other RRS-enabled products, coordinated by
OS/390 Resource Recovery Services (RRS).

The adapters use the OS/390 STIMERM service to schedule an asynchronous event
every second. This event runs an interrupt request block (IRB) that does not
involve any waiting by the batch application’s task. This IRB checks to see if the
MQSeries termination ECB has been posted. If the termination ECB has been
posted, the IRB posts any application ECBs that are waiting on an event in the
MQSeries subsystem (for example, a signal or a wait).

© Copyright IBM Corp. 1993, 2000 103

The Batch/TSO adapter
The MQSeries Batch/TSO adapter provides MQSeries support for OS/390 Batch
and TSO applications. All application programs that run under OS/390 Batch or
TSO must have the API stub program CSQBSTUB link-edited with them. The stub
provides the application with access to all MQI calls. You use single-phase commit
and backout for applications by issuing the MQI calls MQCMIT and MQBACK.

The RRS adapter
Resource Recovery Services (RRS) is a subcomponent of OS/390 that provides a
system-wide service for coordinating two-phase commit across OS/390 products.
The MQSeries Batch/TSO RRS adapter (the RRS adapter) provides MQSeries
support for OS/390 Batch and TSO applications that want to use these services.
The RRS adapter enables MQSeries to become a full participant in RRS
coordination. Applications can participate in two-phase commit processing with
other products that support RRS (for example, DB2).

The RRS adapter provides two stubs; application programs that want to use RRS
must be link-edited with one of these stubs.

CSQBRSTB
This stub allows you to use two-phase commit and backout for
applications by using the RRS callable resource recovery services instead of
the MQI calls MQCMIT and MQBACK.

You must also link-edit module ATRSCSS from library SYS1.CSSLIB with
your application. If you use the MQI calls MQCMIT and MQBACK, you
will receive return code MQRC_ENVIRONMENT_ERROR.

CSQBRSSI
This stub allows you to use MQI calls MQCMIT and MQBACK; MQSeries
actually implements these calls as the SRRCMIT and SRRBACK RRS
calls.

For information about building application programs that use the RRS adapter, see
the MQSeries Application Programming Guide.

Where to find more information
You can find more information about the topics discussed in this chapter from the
following sources:

Table 17. Where to find more information about using OS/390 Batch with MQSeries

Topic Where to look

Setting up the Batch adapters MQSeries for OS/390 System Setup Guide

Writing applications to use the Batch
adapter

MQSeries Application Programming Guide

RRS callable resource recovery services MVS Programming: Callable Services for
High Level Languages

MQSeries and Batch

104 Concepts and Planning Guide

Part 4. Planning your MQSeries environment

Chapter 14. Planning your storage requirements 107
Address space storage 107

Private region storage usage 107
Region sizes 108

Logs and archive storage 109
DB2 storage 110
Coupling Facility storage 111
Page set and message storage 111
Library storage 111
Where to find more information 111

Chapter 15. Planning your page sets and buffer
pools 113
Planning your page sets 113
Calculating the size of your page sets 114

Page set zero 114
Page sets 01 to 99 115

Calculating the storage requirement for
messages 115

Enabling dynamic page set expansion 118
How to determine an appropriate secondary
extent value 118
Number of extents available 118
Multivolume data sets 119

Defining your buffer pools 120

Chapter 16. Planning your Coupling Facility and
DB2 environment 123
Defining Coupling Facility resources 123

Planning your structures 123
Using multiple structures 123

Planning the size of your structures 124
Mapping shared queues to structures 126

Planning your DB2 environment 126

Chapter 17. Planning your logging environment 127
Planning your logs 127

Log data set definitions 127
Should your installation use single or dual
logging? 127
How many active log data sets do you need? 128
How large should the active logs be? . . . 128
Active log placement 128

Planning your archive storage 129
Should your archive logs reside on tape or
DASD? 129

Archiving to tape 129
Archiving to DASD volumes 130
Using SMS with archive log data sets . . . 130

Chapter 18. Planning for backup and recovery 131
Recovery procedures 131
General tips for backup and recovery 132

Periodically take backup copies 132
Backing up your object definitions 133

Do not discard archive logs you might need . . 133
Do not change the DDname to page set
association 133

Recovering page sets 134
How often should a page set be backed up? . . 134

Achieving specific recovery targets 136
Periodic review of backup frequency 137

Backup and recovery with DFHSM 137
MQSeries recovery and CICS 138
MQSeries recovery and IMS 138
Preparing for recovery on an alternative site . . . 138

© Copyright IBM Corp. 1993, 2000 105

106 Concepts and Planning Guide

Chapter 14. Planning your storage requirements

This chapter discusses the storage requirements for MQSeries for OS/390. It
contains the following sections:
v “Address space storage”
v “Logs and archive storage” on page 109
v “DB2 storage” on page 110
v “Coupling Facility storage” on page 111
v “Page set and message storage” on page 111
v “Library storage” on page 111
v “Where to find more information” on page 111

Address space storage
Each MQSeries for OS/390 subsystem has the following approximate storage
requirements:
CSA 4 KB
ECSA 800 KB, plus the size of the trace table specified in the TRACTBL

parameter of the CSQ6SYSP system parameter macro. This macro is
described in the MQSeries for OS/390 System Setup Guide.

In addition, each concurrent MQSeries task requires about 5 KB of ECSA. When a
task ends, this storage can be reused by other MQSeries tasks. MQSeries does not
release the storage until the queue manager is shut down, so the maximum
amount of ECSA required can be calculated by multiplying the maximum number
of concurrent tasks by 5 KB.

Concurrent tasks consist of the following:
v The number of Batch, TSO or IMS regions that have connected to MQSeries, but

not disconnected
v The number of CICS transactions that have issued an MQSeries request, but

have not terminated

The channel initiator typically requires ECSA usage of up to 160 KB, plus about 2.4
KB per channel. The channel initiator does not use any CSA.

Private region storage usage
If you are using OS/390 Version 2.6, every channel uses the following private
region virtual storage below the 16 MB line in the channel initiator address space:
v 1200 bytes if LE/370 APAR PQ03507 has been applied
v None if LE/370 APAR PQ06157 has also been applied
v 8 KB otherwise

These APARs have been incorporated into later versions of OS/390 so MQSeries
channels do not require any private region storage if you are using OS/390 Version
2.7 or later.

© Copyright IBM Corp. 1993, 2000 107

Every channel uses approximately 170 KB of extended private region in the
channel initiator address space. Storage is increased by message size if messages
larger than 32 KB are transmitted.

This increased storage is freed when:
v A sending or client channel requires less than half the current buffer size for 10

consecutive sends
v A heartbeat is sent or received

The storage is freed for re-use within the LE environment, but is not seen as free
by the OS/390 virtual storage manager.

This means that the upper limit for the number of channels is dependent on
message size and arrival patterns as well as individual user system limitations on
extended private region size. The upper limit on the number of channels is likely
to be approximately 9000 on many systems as the extended region size is unlikely
to exceed 1.6 GB. The use of message sizes larger than 32 KB reduces the
maximum number of channels in the system. For example, if messages that are 100
MB long are transmitted, and an extended region size of 1.6 GB is assumed, the
maximum number of channels is 15.

Region sizes
The following table shows suggested values for region sizes. Two sets of values are
given; one set is suitable for a test system, the other for a production system or a
system that will become a production system eventually.

Table 18. Suggested definitions for JCL region sizes

Definition setting Test system Production system

Queue manager REGION=7168K REGION=0M

Channel initiator REGION=7168K REGION=0M

The region sizes suggested for the test system (REGION=7168K for both the queue
manager region and channel initiator region) allow the queue manager and
channel initiator to allocate 7 MB of private virtual storage below the 16 MB line
(PVT) and up to 32 MB of extended private virtual storage above the 16 MB line
(extended PVT).

These values are insufficient for a production system with large buffer pools and
many active channels. The production region sizes chosen (REGION=0M) allow all
available private storage above and below the 16 MB line to be used, although
MQSeries uses very little storage below the 16 MB line.

Note: You can use the MVS exit IEALIMIT to override the region limits below the
16 MB line and IEFUSI to override the region limits above and below the 16
MB line.

Planning your storage requirements

108 Concepts and Planning Guide

Logs and archive storage
Active log data sets record significant events and data changes. They are
periodically off-loaded to the archive log. Consequently, the space requirements for
your active log data sets depend on the volume of messages that your MQSeries
for OS/390 handles and how often the active logs are off-loaded to your archive
data sets. MQSeries for OS/390 provides optional support for dual logging; if you
use this your log storage requirement will be doubled.

If you decide to place the archive data sets on direct access storage devices
(DASD), you need to reserve enough space on the devices. Space should also be
reserved for the bootstrap data sets (BSDS). A typical size for each BSDS might be
500 KB. These are all separate data sets and should be allocated space on different
volumes and strings if possible to minimize DASD contention and problems
caused by any defects on the physical devices.

Because each change to the system is logged, the size of storage required can be
estimated from the size and expected throughput of persistent messages
(nonpersistent messages are not logged). You must add to this a small overhead for
the header information in the data sets.

To arrive at the size of the log extents, an algorithm can be developed which
depends on various factors including the message rate and size of persistent
messages and how frequently you want to switch the log.

Figure 19 shows an approximate calculation for the number of records to specify in
the cluster for the log data set.

Each log data set should have the same number of records specified and should
not have secondary extents. Other than for a very small number of records, AMS
rounds up the number of records so that a whole number of cylinders is allocated.
The number or records actually allocated is:

Number of records = (a * log switch interval) / 4096

where a = (Number of puts/sec*(average persistent message size+500))
+ (Number of gets/sec*110)
+ (Number of units of recovery started*120)
+ (Number of syncpoints per second*240)

and
log switch interval = time period between successive log

switches required in seconds

Figure 19. Calculating the number of records to specify in the cluster for the log data set

c = (INT (number of log records / b) + 1) * b

Where b is the number of 4096-byte blocks per cylinder (180 for a
3390 device) and INT means round down to an integer

Planning your storage requirements

Chapter 14. Planning your storage requirements 109

DB2 storage
If you are using queue-sharing groups, you need to set up a set of DB2 tables that
are used to hold MQSeries data. These are automatically defined for you by
MQSeries when you set up your DB2 environment (as described in the MQSeries
for OS/390 System Setup Guide).

For most installations, the amount of DB2 storage required is about 20 or 30
cylinders on a 3390 device. However, if you want to calculate your storage
requirement, the following table gives some information to help you determine
how much storage DB2 will require for the MQSeries data. The table describes the
length of each DB2 row, and when each row is added to or deleted from the
relevant DB2 table. Use this information together with the information about
calculating the space requirements for the DB2 tables and their indexes in the DB2
for OS/390 Installation Guide.

Table 19. Planning your DB2 storage requirements

DB2 table name Length
of row

A row is added when: A row is deleted when:

CSQ.ADMIN_B_QSG 223
bytes

A queue-sharing group is added to
the table with the ADD QSG
function of the CSQ5PQSG utility.

A queue-sharing group is removed
from the table with the REMOVE
QSG function of the CSQ5PQSG
utility. (All rows relating to this
queue-sharing group are deleted
automatically from all the other DB2
tables when the queue-sharing group
record is deleted.)

CSQ.ADMIN_B_QMGR Up to
3281
bytes

A queue manager is added to the
table with the ADD QMGR
function of the CSQ5PQSG utility.

A queue manager is removed from
the table with the REMOVE QMGR
function of the CSQ5PQSG utility.

CSQ.ADMIN_B_STRUCTURE 242
bytes

The first local queue definition,
specifying the QSGDISP(SHARED)
attribute, that names a previously
unknown structure within the
queue-sharing group is defined.

The last local queue definition,
specifying the QSGDISP(SHARED)
attribute, that names a structure
within the queue-sharing group is
deleted.

CSQ.ADMIN_B_SCST 291
bytes

A shared channel is started. A shared channel becomes inactive.

CSQ.ADMIN_B_SSKT 240
bytes

A shared channel that has the
NPMSPEED(NORMAL) attribute is
started.

A shared channel that has the
NPMSPEED(NORMAL) attribute
becomes inactive.

CSQ.OBJ_B_QUEUE Up to
3744
bytes

v A queue with the
QSGDISP(GROUP) attribute is
defined.

v A queue with the
QSGDISP(SHARED) attribute is
defined.

v A model queue with the
DEFTYPE(SHAREDYN) attribute
is opened.

v A queue with the
QSGDISP(GROUP) attribute is
deleted.

v A queue with the
QSGDISP(SHARED) attribute is
deleted.

v A dynamic queue with the
DEFTYPE(SHAREDYN) attribute is
closed with the DELETE option.

CSQ.OBJ_B_NAMELIST Up to
15096
bytes

A namelist with the
QSGDISP(GROUP) attribute is
defined.

A namelist with the
QSGDISP(GROUP) attribute is
deleted.

CSQ.OBJ_B_CHANNEL Up to
3646
bytes

A channel with the
QSGDISP(GROUP) attribute is
defined.

A channel with the
QSGDISP(GROUP) attribute is
deleted.

Planning your storage requirements

110 Concepts and Planning Guide

Table 19. Planning your DB2 storage requirements (continued)

DB2 table name Length
of row

A row is added when: A row is deleted when:

CSQ.OBJ_B_STGCLASS Up to
2836
bytes

A storage class with the
QSGDISP(GROUP) attribute is
defined.

A storage class with the
QSGDISP(GROUP) attribute class is
deleted.

CSQ.OBJ_B_PROCESS Up to
3326
bytes

A process with the
QSGDISP(GROUP) attribute is
defined.

A process with the
QSGDISP(GROUP) attribute is
deleted.

Coupling Facility storage
“Planning the size of your structures” on page 124 describes how to determine how
large to make your Coupling Facility structures.

Page set and message storage
The amount of storage needed for page data sets depends on the sizes of the
messages that your applications will exchange, on the numbers of these messages,
and on the rate at which they are created or exchanged. You can calculate the
amount of storage needed for page data sets using the algorithm given in
“Chapter 15. Planning your page sets and buffer pools” on page 113.

Library storage
You need to allocate storage for the product libraries. The exact figures depend on
your configuration, but an estimate of the space required by the distribution
libraries is 80 MB. The target libraries require about 72 MB. Additionally, you
require space for the SMP/E libraries.

You should refer to the program directory supplied with MQSeries for OS/390 for
information about the required libraries and their sizes.

Where to find more information
You can find more information about the topics discussed in this chapter from the
following sources:

Table 20. Where to find more information about storage requirements

Topic Were to look

System parameters MQSeries for OS/390 System Setup Guide

Storage required to install MQSeries MQSeries for OS/390 Program Directory

IEALIMIT and IEFUSI exits MVS Installation Exits

Latest information MQSeries SupportPac™ Web site
http://www.ibm.com/software/mqseries/

Planning your storage requirements

Chapter 14. Planning your storage requirements 111

Planning your storage requirements

112 Concepts and Planning Guide

Chapter 15. Planning your page sets and buffer pools

This chapter contains the following sections:
v “Planning your page sets”
v “Calculating the size of your page sets” on page 114
v “Enabling dynamic page set expansion” on page 118
v “Defining your buffer pools” on page 120

Planning your page sets
When deciding on the most appropriate settings for page set definitions, there are
a number of factors that should be considered.

Page set usage
In the case of short-lived messages, few pages are normally used on the
page set and there is little or no I/O to the data sets except at startup,
during a checkpoint, or at shutdown.

In the case of long-lived messages, those pages containing messages are
normally written out to disk. This is performed by the queue manager in
order to reduce restart time.

You should separate short-lived messages from long-lived messages by
placing them on different page sets and in different buffer pools.

Number of page sets
Using several large page sets can make the role of the MQSeries
administrator easier because it means that you need fewer page sets,
making the mapping of queues to page sets simpler.

Using multiple, smaller page sets has a number of advantages. For
example, they take less time to back up, and I/O can be carried out in
parallel during backup and restart. However, consider that this adds a
significant overhead to the role of the MQSeries administrator, who will be
required to map each queue to one of a much greater number of page sets.

You are recommended to define at least five page sets, as follows:
v A page set reserved for object definitions (page set zero)
v A page set for system related messages
v A page set for performance-critical long-lived messages
v A page set for performance-critical short-lived messages
v A page set for all other messages

“Defining your buffer pools” on page 120 explains the performance
advantages of distributing your messages on page sets in this way.

Size of page sets
You should allow enough space in your page sets for the expected peak
message capacity. You should also specify a secondary extent to allow for
any unexpected peak capacity, such as when a build up of messages
develops because a queue server program is not running.

The size of the page set also determines the time taken to recover a page
set when restoring from a backup, because a large page set takes longer to
restore.

© Copyright IBM Corp. 1993, 2000 113

Note: Recovery of a page set also depends on the time the queue manager
takes to process the log records written since the backup was taken;
this is determined by the backup frequency. This is discussed in
“Recovery procedures” on page 131.

Calculating the size of your page sets
For queue manager object definitions (for example, queues and processes), it is
simple to calculate the storage requirement because these objects are of fixed size
and are permanent. For messages however, the calculation is more complex for the
following reasons:
v Messages vary in size.
v Messages are transitory.
v Space occupied by messages that have been retrieved is reclaimed periodically

by an asynchronous process.

Page set zero
For page set zero, the storage required is:

Divide this value by 4096 to determine the number of records to specify in the
cluster for the page set data set.

You do not need to allow for objects that are stored in the shared repository, but
you do have to allow for objects that are stored or copied to page set zero (objects
with a disposition of GROUP or QMGR).

The total number of objects that can be created is limited by the capacity of page
set zero. There is an implementation limit on the number of local queues that can
be defined, which is 524 287.

(maximum number of local queue definitions x 1010)
(excluding shared queues)

+ (maximum number of model queue definitions x 746)
+ (maximum number of alias queue definitions x 338)
+ (maximum number of remote queue definitions x 434)
+ (maximum number of permanent dynamic queue definitions x 1010)
+ (maximum number of process definitions x 674)
+ (maximum number of namelist definitions x 12320)
+ (maximum number of message channel definitions x 1010)
+ (maximum number of client-connection channel definitions x 1714)
+ (maximum number of server-connection channel definitions x 1010)
+ (maximum number of cluster-receiver channel definitions x 1010)
+ (maximum number of cluster-sender channel definitions x 1010)
+ (maximum number of storage class definitions x 266)

Planning your page sets and buffer pools

114 Concepts and Planning Guide

Page sets 01 to 99
For page sets 01 to 99, the storage required for each page set is determined by the
number and size of the messages stored on that page set. (Messages on shared
queues are not stored on page sets.)

Divide this value by 4096 to determine the number of records to specify in the
cluster for the page set data set.

Calculating the storage requirement for messages
This section describes how messages are stored on pages. Understanding this will
help you calculate how much page set storage you need to define for your
messages. To calculate the approximate space required for all messages on a page
set you must consider maximum queue depth of all the queues that map to the
page set and the average size of messages on those queues.

You must allow for the possibility that message “gets” might be delayed for
reasons outside the control of MQSeries (for example, because of a problem with
your communications protocol). In this case, the “put” rate of messages might far
exceed the “get” rate. This could lead to a large increase in the number of
messages stored in the page sets and a consequent increase in the storage size
demanded.

Each page in the page set is 4096 bytes long. Allowing for fixed header
information, each page has 4057 bytes of space available for storing messages.

When calculating the space required for each message, the first thing you need to
consider is whether the message will fit on one page (a short message) or whether it
needs to be split over two or more pages (a long message). When messages are split
in this way, you need to allow for additional control information in your space
calculations.

For the purposes of space calculation, a message can be represented like this:

The message header section contains the message descriptor (352 bytes) and other
control information, the size of which varies depending on the size of the message.
The message data section contains all the actual message data, and any other
headers (for example, the transmission header or the IMS bridge header).

A minimum of two pages are required for page set control information. This is
typically less than 1% of the total space required for messages.

Message header Message data

Planning your page sets and buffer pools

Chapter 15. Planning your page sets and buffer pools 115

Short messages: A short message is defined as a message that will fit on one
page.

For a short message the control information is 20 bytes long. When this is added to
the length of the message header, the usable space remaining on the page is 3685
bytes. If the size of the message data is 3685 bytes or less, MQSeries stores the
messages in the next available space on the page, or if there is not enough space
available, on the next page, as shown in Figure 20:

If there is sufficient space remaining on the page, the next message is also stored
on this page, if not, the remaining space on the page is left unused.

Long messages: If the size of the message data is greater than 3685 bytes, but not
greater than 4 MB, the message is classed as a long message. When presented with
a long message, MQSeries stores the message on a series of pages, and stores
control information that points to these pages in the same way that it would store
a short message. This is shown in Figure 21:

Each segment of the long message is preceded by 8 bytes of control information,
and the first segment also includes the message header portion of 352 bytes. This
means that the first page contains 3697 bytes of the message data. The remaining
message data is placed on subsequent pages, in 4049-byte segments. If this does
not fill an exact number of pages, the remaining space in the last page is left
unused.

Short
Message
1

Short
Message
2

Short
Message
3

Page 1

Short
Message
4

Short
Message
n

Page 2

Figure 20. How MQSeries stores short messages on page sets

Long Message segment 1

Page 3

Long Message segment 2

Page 4

Long Message segment 3

Page 5

Short
Message
1

Long
Message
1

Short
Message
2

Page 1

Short
Message
3

Short
Message
4

Page 2

Figure 21. How MQSeries stores long messages on page sets

Planning your page sets and buffer pools

116 Concepts and Planning Guide

The number of pages (n) used for a long message is calculated as follows:

In addition to this, you need to allow space for the control information that points
to the pages. The length of this (c) depends on the length of the message, and is
calculated as follows:

This means that the total page set space required for a long message is:

Very long messages: Very long messages are messages with a size greater than 4
MB. These are stored so that each 4 MB uses 1037 pages. Any remainder is stored
in the same was as a long message, as described above.

message data length + 352
n = -------------------------

4049

rounded up to the nearest page

c = 20 + (3n) bytes

(where n is the number of pages calculated above)

(n * 4096) + c bytes

Planning your page sets and buffer pools

Chapter 15. Planning your page sets and buffer pools 117

Enabling dynamic page set expansion
Page sets can be extended dynamically while MQSeries is running. A page set can
have up to 123 extents, which can exist on multiple disk volumes.

Note: The maximum number of extents for a page set cataloged in an ICF catalog
is between 119 and 123, depending upon the number of extents (1-5)
allocated by direct access storage data management (DADSM) per
allocate/extend request.

In order to use this facility, your page sets must be allocated with secondary extent
values defined. If you have existing page set definitions, they cannot be altered to
add secondary extent definitions. You will have to re-allocate each of your page
sets with secondary extents, and then use the COPYPAGE function of CSQUTIL to
copy the old versions of the page sets to the new ones.

Sample thlqual.SCSQPROC(CSQ4PAGE) shows how to define the secondary
extents. CSQUTIL is described in the MQSeries for OS/390 System Administration
Guide.

How to determine an appropriate secondary extent value
You might decide the secondary extent value by considering how many times the
page set should exceed its original value. For instance, if your page set primary
allocation is 1000 units (records/pages, tracks, cylinders, KB, MB), and you want it
to grow to be at most four times that size, then determine the secondary extent
size from:

You might not be able to use this much disk space, as described in “Number of
extents available”.

Note: If you define the size of your extent in records, IDCAMS rounds this up to
map onto a physical boundary. The queue manager uses all this space for
the secondary extent.

Number of extents available
The Data Facility Product (DFP) uses up to five non-contiguous areas of disk to
satisfy the total space requirements of a primary or secondary extent. This means,
in the worst case of badly fragmented disk space, that you might only get around
22 times the secondary space allocated before you reach the maximum extent limit.

(maximum size - original size)

119

In this case, 4000 - 1000 = 3000 = 25 or 26
----------- ----

119 119

Planning your page sets and buffer pools

118 Concepts and Planning Guide

Multivolume data sets
If the definition of a page set allows it to utilize multiple volumes, the primary
space is wholly contained on the first volume, and secondary extents are first
allocated on the same volume, while space is available, and thereafter the next
volume is used, while space is available, and so on. The process stops when you
have used all the secondary extents, or no more disk space is available.

This behavior differs if the page set is a data set managed by Storage Management
Subsystem (SMS), and you use a storage class that uses the GUARANTEED SPACE
attribute. In this case, a primary extent is allocated on each volume when the page
set is defined. Thereafter, secondary extents are allocated, as before, except that
when the services of a new volume are required, the pre-allocated secondary extent
is used.

Planning your page sets and buffer pools

Chapter 15. Planning your page sets and buffer pools 119

Defining your buffer pools
The following table shows suggested values for buffer pool definitions that affect
the performance of queue manager operation, recovery, and restart. Two sets of
values are given; one set is suitable for a test system, the other for a production
system or a system that will become a production system eventually.

Table 21. Suggested definitions for buffer pool settings

Definition setting Test system Production system

BUFFPOOL 0 1 050 buffers 50 000 buffers

BUFFPOOL 1 1 050 buffers 20 000 buffers

BUFFPOOL 2 1 050 buffers 50 000 buffers

BUFFPOOL 3 1 050 buffers 20 000 buffers

You are recommended to reserve buffer pool 0 for object definitions (in page set 0)
and performance critical, system related message queues, such as the
SYSTEM.CHANNEL.SYNCQ queue and the SYSTEM.CLUSTER.* queues. The
remaining three buffer pools can be used for user messages, for example:
v Buffer pool 1 might be used for important long-lived messages.

Long-lived messages are those that remain in the system for longer than two
checkpoints, at which time they are written out to the page set. If you have a
large number of long-lived messages, this buffer pool should be relatively small,
so that page set I/O is evenly distributed (older messages are written out to
DASD each time the buffer pool becomes 85% full).
If the buffer pool is too large, page set I/O is delayed until checkpoint
processing. This might affect response times throughout the system.
If you expect a small number of long-lived messages only, this buffer pool
should be defined so that it is sufficiently large to hold all of these messages.

v Buffer pool 2 might be used for performance-critical, short-lived messages.
There will normally be a high degree of buffer reuse, using a small number of
buffers; however, you are recommended to make this buffer pool large in order
to allow for unexpected message accumulation, for example, when a server
application fails.

v Buffer pool 3 might be used for all other (usually performance non-critical)
messages. Queues such as the dead-letter queue, SYSTEM.COMMAND.* queues
and SYSTEM.ADMIN.* queues can also be mapped to buffer pool 3.
Where virtual storage constraints exist and buffer pools need to be smaller,
buffer pool 3 is the first candidate for size reduction.

Initially, you are recommended to define all buffer pools as shown in the table.
Usage of buffer pools can be monitored by analysis of buffer pool performance
statistics. In particular, you should ensure that the buffer pools are large enough so
that the values of QPSTSOS, QPSTSTLA and QPSTNBUF remain at zero. (These
performance statistics are described in the MQSeries for OS/390 System Setup Guide.)

Buffer pool 0 and the buffer pool for short-lived messages (buffer pool 2) should
be tuned so that the 15% free threshold is never exceeded (that is, QPSTCBSL
divided by QPSTNBUF is always greater than 15%). If more than 15% of buffers
remain free, I/O to the page sets using these buffer pools can be largely avoided
during normal operation, although messages older than two checkpoints will be
written to page sets.

Planning your page sets and buffer pools

120 Concepts and Planning Guide

Note: The optimum value for these parameters is dependent on the characteristics
of the individual system. The values given are only intended as a guideline
and might not be appropriate for your system.

MQSeries SupportPac Capacity planning and tuning for MQSeries for OS/390 (MP16)
gives more information about tuning buffer pools.

Planning your page sets and buffer pools

Chapter 15. Planning your page sets and buffer pools 121

122 Concepts and Planning Guide

Chapter 16. Planning your Coupling Facility and DB2
environment

This chapter discusses the following topics:
v “Defining Coupling Facility resources”
v “Planning your DB2 environment” on page 126

Defining Coupling Facility resources
If you intend to use shared queues, you must define the Coupling Facility
structures that MQSeries will use in your CFRM policy. To do this you must first
update your CFRM policy with information about the structures, and then activate
the policy.

Your installation probably has an existing CFRM policy that describes the Coupling
Facilities available. The IXCMIAPU OS/390 utility is used to modify the contents
of the policy based on textual statements you provide. The utility is described in
the MVS Setting up a Sysplex manual. You must add statements to the policy that
define the names of the new structures, the Coupling Facilities that they are to be
defined in, and what size the structures will be.

Planning your structures
A queue-sharing group requires a minimum of two structures to be defined. The
first structure, known as the administrative structure, is used to coordinate
MQSeries internal activity across the queue-sharing group. No user data is held in
this structure. It has a fixed name of qsg-nameCSQ_ADMIN (where qsg-name is the
name of your queue-sharing group). Subsequent structures are used to hold the
messages on MQSeries shared queues. Each structure is able to hold up to 512
shared queues.

Using multiple structures
A queue-sharing group can connect to up to 64 Coupling Facility structures. One of
these structures must be the administration structure, but you can use up to 63
structures for MQSeries data. You might choose to use multiple structure because:
v You have some queues that are likely to hold a very large number of messages

and so will require all the resources of an entire Coupling Facility.
v You have a requirement for a very large number of shared queues, so they must

be split across multiple structures because each structure can only contain 512
queues.

v RMF™ reports on the usage characteristic of a structure suggest that you should
distribute the queues it contains across a number of Coupling Facilities.

v You want some queue data to held in a physically different Coupling Facility
from other queue data for data isolation reasons.

When choosing which Coupling Facilities the structures should be allocated in, you
should consider the following points:
v Your data isolation requirements.
v The volatility of the Coupling Facility (that is, its ability to preserve data

through a power outage).

© Copyright IBM Corp. 1993, 2000 123

v Failure independence between the accessing systems and the Coupling Facility,
or between Coupling Facilities.

v The level of Coupling Facility Control Code (CFCC) installed on the Coupling
Facility (MQSeries requires Level 9 or higher).

Planning the size of your structures
The size of the administrative structure (qsg-nameCSQ_ADMIN) must be at least 10
MB.

The size of the structures required to hold MQSeries messages depends on the
likely number and size of the messages to be held on a structure concurrently,
together with an estimate of the likely number of concurrent units of work.

The graph in Figure 22 shows how large you should make your CF structures to
hold the messages on your shared queues. To calculate the allocation size you need
to know
v The average size of messages on your queues
v The total number of messages likely to be stored in the structure

Find the value of log10 of the number of messages, (for example, 200 000 messages
gives a value of 5.3) along the horizontal axis. Select the curve that corresponds to
your message size and determine the required value from the vertical axis. For
example, for 200 000 messages of length 1 KB gives a value of about 29. This
means you need to a Coupling Facility structure with a size of 228 = 256 MB.

Figure 22. Calculating the size of a Coupling Facility structure

Planning your Coupling Facility and DB2 environment

124 Concepts and Planning Guide

Your CFRM policy should include the following statements:

INITSIZE is the size in KB that XES will allocate to the structure when the first
connector connects to it. MAXSIZE is the maximum size that the structure can attain.
FULLTHRESHOLD sets the percentage value of the threshold at which XES issues
message IXC585E to indicate that the structure is getting full.

For example, with the figures determined above, you might include the following
statements:

If the structure utilization reaches the threshold where warning messages are
issued, intervention is required. You might use MQSeries to inhibit MQPUT
operations to some of the queues in the structure to prevent applications from
writing more messages, start more applications to get messages from the queues,
or quiesce some of the applications that are putting messages to the queue.

Alternatively XES facilities can be used to alter the structure size in place. The
following OS/390 command:

alters the size of the structure to newsize, where newsize is a value that is less than
the value of MAXSIZE specified on the CFRM policy for the structure, but greater
than the current Coupling Facility size.

You can monitor the utilization of a Coupling Facility structure with the MQSeries
DISPLAY GROUP command.

If no action is taken and a queue structure fills up, an
MQRC_STORAGE_MEDIUM_FULL return code is returned to the application. If
the administration structure becomes full, the exact symptoms depend on which
processes experience the error, but they might include the following problems:
v No responses to commands.
v Queue manager failure as a result of problems during commit processing.

CFNAME(structure-name)
INITSIZE(value from graph, in KB)
MAXSIZE(something larger)
FULLTHRESHOLD(85)

CFNAME(QSG1APPLICATION1)
INITSIZE(272144) /* 256 MB */
MAXSIZE(524288) /* 512 MB */
FULLTHRESHOLD(85)

SETXCF START,ALTER,CFNAME=structure-name,SIZE=newsize

Planning your Coupling Facility and DB2 environment

Chapter 16. Planning your Coupling Facility and DB2 environment 125

Mapping shared queues to structures
The CFSTRUCT attribute of the queue definition is used to map the queue to a
structure.

MQSeries adds the name of the queue-sharing group to the beginning of the
CFSTRUCT attribute. For a structure defined in the CFRM policy with name
qsg-nameSHAREDQ01, the definition of a queue that uses this structure will be:

Planning your DB2 environment
If you are using queue-sharing groups, MQSeries needs to attach to a DB2
subsystem that is a member of a data-sharing group. MQSeries needs to know the
name of the data-sharing group that it is to connect to, and the name of a DB2
subsystem (or DB2 group) to connect to in order to reach this data-sharing group.
These names are specified in the QSGDATA parameter of the CSQ6SYSP system
parameter macro (described in the MQSeries for OS/390 System Setup Guide).

MQSeries uses the RRS Attach facility of DB2. This means that you can specify the
name of a DB2 group that you want to connect to. The advantage of connecting to
a DB2 group attach name (rather than a specific DB2 subsystem), is that MQSeries
can connect (or reconnect) to any available DB2 subsystem on the OS/390 image
that is a member of that group. There must be a DB2 subsystem that is a member
of the data-sharing group active on each OS/390 image where you are going to
run a queue-sharing MQSeries subsystem, and RRS must be active.

DEFINE QLOCAL(myqueue) QSGDISP(SHARED) CFSTRUCT(SHAREDQ01)

Planning your Coupling Facility and DB2 environment

126 Concepts and Planning Guide

Chapter 17. Planning your logging environment

The MQSeries logging environment is established using the system parameter
macros to specify options, such as whether to have single or dual active logs, what
media to use for the archive log volumes, and how many log buffers to have.
These macros are described in the MQSeries for OS/390 System Setup Guide.

This chapter discusses the following topics:
v “Planning your logs”
v “Planning your archive storage” on page 129

Planning your logs
You are recommended to have at least three log data sets, and to use dual logging
and log archiving. The following table shows suggested values for log and
bootstrap data set definitions that affect the performance of queue manager
operation, recovery, and restart. Two sets of values are given; one set is suitable for
a test system, the other for a production system or a system that will become a
production system.

Table 22. Suggested definitions for log and bootstrap data sets

Definition setting Test system Production system

Log data set size1 10 000 records (40 MB
approx.)

Access Method Services
rounds to nearest cylinder
and allocates 10 080 records.

180 000 records (700 MB or 1 000
cylinders of 3390)

Number of active logs1 3 6

BSDS size 60 records (240 KB approx.) 120 records (480 KB approx.) A
primary extent of this size
should be sufficient for the
maximum number of archive
logs that can be recorded in the
BSDS (1 000).

Note:

1. The optimum value for this definition is dependent on the characteristics of the
individual system. The values given are intended as a guideline only and might not be
appropriate for your system.

Log data set definitions
Before setting up the log data sets, review the following section in order to decide
on the most appropriate configuration for your system.

Should your installation use single or dual logging?
If your DASD type is 3390 or similar, you are recommended to use dual logging in
order to ensure that you have an alternative backup source in the event of losing a
data set. You should also use dual BSDSs and dual archiving to ensure adequate
provision for data recovery.

© Copyright IBM Corp. 1993, 2000 127

If you use devices with in-built data redundancy (for example, Redundant Array of
Independent Disks (RAID) devices) you might consider using single active logging.
If you use persistent messages, single logging can increase maximum capacity by
10-30% and can also improve response times.

Dual active logging adds a small performance overhead. You might want to specify
it on a test system used for benchmarking, in addition to a production system.

How many active log data sets do you need?
You should have sufficient active logs to ensure that your system is not impacted
in the event of an archive being delayed.

In practice, you should have at least three active log data sets but it is preferable to
define more. For example, if the time taken to fill a log is likely to approach the
time taken to archive a log during peak load, you should define more logs. You are
also recommended to define more logs to offset possible delays in log archiving. If
you use archive logs on tape, allow for the time required to mount the tape.

How large should the active logs be?
Your logs should be large enough so that it takes at least 30 minutes to fill a single
log during the expected peak persistent message load. If you are archiving to tape,
you are advised to make the logs large enough to fill one tape cartridge, or a
number of tape cartridges. (For example, a log size of 1000 cylinders on 3390
DASD will fit onto a 3490E non-compacted tape with space to spare.)

Note: When archiving to tape, a copy of the BSDS is also written to the tape.
When archiving to DASD, a separate data set is created for the BSDS copy.

If the logs are small (for example, 10 cylinders) it is likely that they will fill up
frequently, which could result in performance degradation. In addition, you might
find that the large number of archive logs required is difficult to manage.

If the logs are very large, and you are archiving to DASD, you will need a
corresponding amount of spare space reserved on DASD for SMS retrieval of
migrated archive logs, which might cause space management problems. In
addition, the time taken to restart might increase because one or more of the logs
has to be read sequentially at startup.

Active log placement
Ideally, each of the active logs should be allocated on separate, low-usage DASD
volumes. As a minimum, no two adjacent logs should be on the same volume.

When an active log fills, the next log in the ring is used and the previous log data
set is copied to the archive data set. If these two active data sets are on the same
volume, contention will result, because one data set is read while the other is
written to. For example, if you have three active logs and use dual logging, you
will need six DASD volumes because each log is adjacent to both of the two other
logs. Alternatively, if you have four active logs and you want to conserve DASD
space, by allocating logs 1 and 3 on one volume and logs 2 and 4 on another, you
will require four DASD volumes only.

In addition, you should ensure that primary and secondary logs are on separate
physical units. If you use 3390 DASD, be aware that each head disk assembly
contains two logical volumes. The physical layout of other DASD subsystems such
as RAMAC® arrays should also be taken into account.

Planning your logging environment

128 Concepts and Planning Guide

Planning your archive storage
This section describes the different ways of maintaining your archive log data sets.

Archive log data sets can be placed on standard-label tapes, or DASD, and can be
managed by data facility hierarchical storage manager (DFHSM). Each OS/390
logical record in an archive log data set is a VSAM control interval from the active
log data set. The block size is a multiple of 4 KB.

Archive log data sets are dynamically allocated, with names chosen by MQSeries.
The data set name prefix, block size, unit name, and DASD sizes needed for such
allocations are specified in the system parameter module. You can also choose, at
installation time, to have MQSeries add a date and time to the archive log data set
name.

It is not possible to choose specific volumes for new archive logs. If allocation
errors occur, off-loading is postponed until the next time off-loading is triggered.

If you specify dual archive logs at installation time, each log control interval
retrieved from the active log is written to two archive log data sets. The log
records that are contained in the pair of archive log data sets are identical, but the
end-of-volume points are not synchronized for multi-volume data sets.

Should your archive logs reside on tape or DASD?
When deciding whether to use tape or DASD for your archive logs, there are a
number of factors that you should consider:
1. Review your operating procedures before making decisions about tape or disk.

For example, if you choose to archive to tape, operators must be available to
mount the appropriate tapes when they are required.

2. During recovery, archive logs on tape are available as soon as the tape is
mounted. If DASD archives have been used, and the data sets migrated to tape
using hierarchical storage manager (HSM), there will be a delay while HSM
recalls each data set to disk. You can recall the data sets before the archive log
is used. However, it is not always possible to predict the correct order in which
they will be required.

3. When using archive logs on DASD, if many logs are required (which might be
the case when recovering a page set after restoring from a backup) you might
require a significant quantity of DASD in order to hold all the archive logs.

4. In a low usage system or test system, it might be more convenient to have
archive logs on DASD in order to eliminate the need for tape mounts.

Archiving to DASD offers faster recoverability but is more expensive than
archiving to tape. If you use dual logging, you can specify that the primary copy
of the archive log go to DASD and the secondary copy go to tape. This increases
recovery speed without using as much DASD, and the tape can be used as a
backup.

Archiving to tape
If you choose to archive to a tape device, MQSeries can extend to a maximum of
twenty volumes.

If you choose to off-load to tape, you should consider adjusting the size of your
active log data sets so that each nearly fills a tape volume. This minimizes tape
handling and volume mounts, and maximizes the use of tape resources. However,
such an adjustment is not essential.

Planning your logging environment

Chapter 17. Planning your logging environment 129

If you are considering changing the size of the active log data set so that the set
fits on one tape volume, you must bear in mind that a copy of the BSDS is placed
on the same tape volume as the copy of the active log data set. Adjust the size of
the active log data set downward to offset the space required for the BSDS on the
tape volume.

If you use dual archive logs on tape, it is typical for one copy to be held locally,
and the other copy to be held off-site for use in disaster recovery.

Archiving to DASD volumes
MQSeries requires that all archive log data sets allocated on non-tape devices
(DASD) be cataloged. If you choose to archive to DASD, the CATALOG parameter
of the CSQ6ARVP macro must be YES. (This macro is described in the MQSeries for
OS/390 System Setup Guide.) If this parameter is NO, and you decide to place
archive log data sets on DASD, you receive message CSQJ072E each time an
archive log data set is allocated, although the MQSeries subsystem still catalogs the
data set.

If the archive log data set is held on DASD, the archive log data sets cannot extend
to another volume.

If you choose to use DASD, make sure that the primary space allocation (both
quantity and block size) is large enough to contain either the data coming from the
active log data set, or that from the corresponding BSDS, whichever is the larger of
the two. This minimizes the possibility of unwanted OS/390 B37 or E37 abends
during the off-load process. The primary space allocation is set with the PRIQTY
(primary quantity) parameter of the CSQ6ARVP macro.

Using SMS with archive log data sets
If you have MVS/DFP™ storage management subsystem (DFSMS) installed, you
can write an Automatic Class Selection (ACS) user-exit filter for your archive log
data sets, which helps you convert them for the SMS environment. Such a filter, for
example, can route your output to a DASD data set, which in turn can be managed
by DFSMS™. You must exercise caution if you use an ACS filter in this manner.
Because SMS requires DASD data sets to be cataloged, you must make sure the
CATALOG DATA field of the CSQ6ARVP macro contains YES. If it does not,
message CSQJ072E is returned; however, the data set is still cataloged by
MQSeries.

For more information about ACS filters, see the DFP Storage Administration
Reference manual, and the SMS Migration Planning Guide.

Planning your logging environment

130 Concepts and Planning Guide

Chapter 18. Planning for backup and recovery

Developing backup and recovery procedures at your site is vital to avoid costly
and time-consuming losses of data. MQSeries provides means for recovering both
queues and messages to their current state after a system failure.

This chapter contains the following sections:
v “Recovery procedures”
v “General tips for backup and recovery” on page 132
v “Recovering page sets” on page 134
v “Achieving specific recovery targets” on page 136
v “Backup and recovery with DFHSM” on page 137
v “MQSeries recovery and CICS” on page 138
v “MQSeries recovery and IMS” on page 138
v “Preparing for recovery on an alternative site” on page 138

Recovery procedures
You should develop the following procedures for MQSeries:
v Creating a point of recovery
v Backing up page sets
v Recovering page sets
v Recovering from out-of-space conditions (MQSeries logs and page sets)

See the MQSeries for OS/390 System Administration Guide for information about
these.

You should also be familiar with the procedures used at your site for the
following:
v Recovering from a hardware or power failure
v Recovering from an OS/390 component failure
v Recovering from a site interruption, using off-site recovery

© Copyright IBM Corp. 1993, 2000 131

General tips for backup and recovery
This section introduces some backup and recovery tasks. The MQSeries restart
process recovers your data to a consistent state by applying log information to the
page sets. If your page sets are damaged or unavailable, you can resolve the
problem using your backup copies of your page sets (provided that all the logs are
available). If your log data sets are damaged or unavailable, it might not be
possible to recover completely.

Periodically take backup copies
A point of recovery is the term used to describe a set of backup copies of MQSeries
page sets and the corresponding log data sets required to recover these page sets.
These backup copies provide a potential restart point in the event of page set loss
(for example, page set I/O error). If MQSeries were to be restarted using these
backup copies, the data in MQSeries will be consistent up to the point that these
copies were taken. Providing that all logs are available from this point, MQSeries
can be recovered to the point of failure.

The more recent your backup copies, the quicker MQSeries can recover the data in
the page sets. The recovery of the page sets are dependent on all the necessary log
data sets being available.

In planning for recovery, you need to determine how often to take backup copies
and how many complete backup cycles to keep. These values tell you how long
you must keep your log data sets and backup copies of page sets for MQSeries
recovery.

In deciding how often to take backup copies, consider the time needed to recover a
page set. It is determined by:
v The amount of log to traverse
v The time it takes an operator to mount and remove archive tape volumes
v The time it takes to read the part of the log needed for recovery
v The time needed to reprocess changed pages
v The storage medium used for the backup copies
v The method used to make and restore backup copies

In general, the more frequently you make backup copies, the less time recovery
takes, but the more time is spent making copies.

For each queue manager, you should take backup copies of:
v The archive log data sets
v The BSDS copies created at the time of the archive
v The page sets
v Your object definitions

To reduce the risk of your backup copies being lost of damaged, you should
consider:
v Storing the backup copies on different storage volumes to the original copies.
v Storing the backup copies at a different site to the original copies.
v Making at least two copies of each backup of your page sets and, if you are

using single logging or a single BSDS, two copies of your archive logs and
BSDS. If you are using dual logging or BSDS, a single copy of both archive logs
or BSDS will suffice.

Planning for backup and recovery

132 Concepts and Planning Guide

Before moving MQSeries to a production environment you should have tested and
documented your backup procedures.

Backing up your object definitions
You should also create backup copies of your object definitions. To do this, use the
MAKEDEF feature of the COMMAND function of the utility program (described in
the MQSeries for OS/390 System Administration Guide).

You should do this whenever you take backup copies of your queue manager data
sets, and keep the most current version.

Do not discard archive logs you might need
MQSeries might need to use archive logs during restart. You must keep sufficient
archive logs so the system can be fully restored. MQSeries might use an archive
log to recover a page set from a restored backup copy. If you have discarded that
archive log, MQSeries is not able to restore the page set to its current state. When
and how you should discard archive logs is described in the MQSeries for OS/390
System Administration Guide.

Do not change the DDname to page set association
MQSeries associates page set number 00 with DDname CSQP0000, page set
number 01 with DDname CSQP0001, and so on up to CSQP0099. MQSeries writes
recovery log records for a page set based on the DDname that the page set is
associated with. For this reason, you must not move page sets that have already
been associated with a PSID DDname.

Planning for backup and recovery

Chapter 18. Planning for backup and recovery 133

Recovering page sets
A key factor in recovery strategy concerns the period of time for which you can
tolerate a queue manager outage. The total outage time might include the time
taken to recover a page set from a backup, or to restart the queue manager after an
abnormal termination. Factors affecting restart time include how frequently you
back up your page sets, and how much data is written to the log between
checkpoints.

In order to minimize the restart time after an abnormal termination, keep units of
work short so that, at most, two active logs are used when the system restarts. For
example, if you are designing an MQSeries application, avoid placing an MQGET
call that has a long wait interval between the first in-syncpoint MQI call and the
commit point because this might result in a unit of work that has a long duration.
Other common causes of long units of work are batch intervals of more than 5
minutes for the channel initiator, and in-doubt channels in the CICS mover.

You can use the DISPLAY THREAD command to display the RBA of units of work
and to help resolve the old ones. For information about the DISPLAY THREAD
command, see the MQSeries MQSC Command Reference manual.

How often should a page set be backed up?
Frequent page set backup is essential if a reasonably short recovery time is
required. This applies even when a page set is very small or there is a small
amount of activity on queues in that page set.

If you use persistent messages in a page set, the backup frequency should be in the
order of hours rather than days. This is also the case for page set zero.

In order to calculate an approximate backup frequency, start by determining the
target total recovery time. This will consist of:
1. The time taken to react to the problem.
2. The time taken to restore the page set backup copy.

(For example, you can restore approximately 60 cylinders of 3390 data per
minute from and to RAMAC Virtual Array 2 Turbo 82 (RVA2-T82) DASD using
Access Method Services REPRO.)
If you use SnapShot backup/restore, the time taken to perform this task is of
the order of a few seconds. For information about SnapShot, see the DFSMSdss
Storage Administration Guide.

3. The time the queue manager requires to restart, including the additional time
needed to recover the page set.
This depends most significantly on the amount of log data that must be read
from active and archive logs since that page set was last backed up. All such
log data must be read, in addition to that directly associated with the damaged
page set.

Note: When using “fuzzy” backup, it might be necessary to read up to three
additional checkpoints, and this might result in the need to read one or
more additional logs.

Planning for backup and recovery

134 Concepts and Planning Guide

When deciding on how long to allow for the recovery of the page set, the factors
that you need to consider are:
v The rate at which data is written to the active logs during normal processing:

– Approximately 1.3 KB of extra data is required on the log for a persistent
message.

– Approximately 2.5 KB of data is required on the log for each batch of
messages sent on a channel.

– Approximately 1.4 KB of data is required on the log for each batch of
messages received on a channel.

– Nonpersistent messages require no log data. NPMSPEED(FAST) channels
require no log data for batches consisting entirely of nonpersistent messages.

The rate at which data is written to the log depends on how messages arrive in
your system, in addition to the message rate. Messages received or sent over a
channel result in more data logging than messages generated and retrieved
locally.

v The rate at which data can be read from the archive and active logs.
When reading the logs, the achievable data rate depends on the devices used
and the overall load on your particular DASD subsystem. (For example, data
rates of approximately 2.7 MB per second have been observed using active and
archive logs on RVA2-T82 DASD.)
With most tape units, it is possible to achieve higher data rates for archived logs
with a large block size. However, if an archive log is required for recovery, all
the data on the active logs must be read also.

Planning for backup and recovery

Chapter 18. Planning for backup and recovery 135

Achieving specific recovery targets
If you have specific recovery targets to achieve, for example, completion of the
queue manager recovery and restart processing in addition to the normal startup
time within xx seconds, you can use the following calculation to estimate your
backup frequency (in hours):

Note: The examples given below are intended to highlight the need to back up
your page sets on a frequent basis. The calculations assume that the majority
of log activity is derived from a large number of persistent messages.
However, there are situations where the amount of log activity is not easily
calculated. For example, in a queue-sharing group environment, a unit of
work in which shared queues are updated in addition to other resources
might result in UOW records being written to the MQSeries log. For this
reason, the ’Application log write rate’ in Formula (A) can only be derived
accurately from the observed rate at which the MQSeries logs fill.

For example, consider a system in which MQSeries clients generate an overall load
of 100 persistent messages per second. In this case, all messages are generated
locally.

If each message is of user length 1 KB, the amount of data logged per hour is of
the order:

Consider an overall target recovery time of 75 minutes. If you have allowed 15
minutes to react to the problem and restore the page set backup copy, queue
manager recovery and restart must then complete within 60 minutes (3600
seconds) applying formula (A). Assuming that all required log data is on RVA2-T82
DASD, which has a recovery rate of approximately 2.7 MB per second, this
necessitates a page set backup frequency of at least every:

If your MQSeries application day lasts approximately 12 hours, one backup each
day is appropriate. However, if the application day lasts 24 hours, two backups
each day is more appropriate.

Formula (A)
Required restart time * System recovery log read rate

(in secs) (in MB/sec)
Backup frequency = ---

(in hours) Application log write rate (in MB/hour)

100 * (1 + 1.3) KB * 3600 = approximately 800 MB

where
100 = the message rate per second
(1 + 1.3) KB = the amount of data logged for

each 1 KB of persistent messages

3600 seconds * 2.7 MB per second / 800 MB per hour = 12.15 hours

Planning for backup and recovery

136 Concepts and Planning Guide

Another example might be a production system in which all the messages are for
request-reply applications (that is, a persistent message is received on a receiver
channel and a persistent reply message is generated and sent down a sender
channel).

In this example, the achieved batch size is one, and so there is one batch for every
message. If there are 50 request replies per second, the overall load is 100
persistent messages per second. If each message is 1 KB in length, the amount of
data logged per hour is of the order:

In order to achieve the queue manager recovery and restart within 30 minutes
(1800 seconds), again assuming that all required log data is on RVA2-T82 DASD,
this requires that page set backup is carried out at least every:

Periodic review of backup frequency
You are recommended to monitor your MQSeries log usage in terms of MB per
hour. You should perform this check periodically and amend your page set backup
frequency if necessary.

Backup and recovery with DFHSM
The data facility hierarchical storage manager (DFHSM) does automatic space- and
data-availability management among storage devices in your system. If you use it,
you need to know that it moves data to and from the MQSeries storage
automatically.

DFHSM manages your DASD space efficiently by moving data sets that have not
been used recently to alternate storage. It also makes your data available for
recovery by automatically copying new or changed data sets to tape or DASD
backup volumes. It can delete data sets, or move them to another device. Its
operations occur daily, at a specified time, and allow for keeping a data set for a
predetermined period before deleting or moving it.

All DFHSM operations can also be performed manually. The Data Facility
Hierarchical Storage Manager User’s Guide explains how to use the DFHSM
commands. If you use DFHSM with MQSeries, note that DFHSM:
v Uses cataloged data sets
v Operates on page sets and logs
v Supports VSAM data sets

50((2 * (1+1.3) KB) + 1.4 KB + 2.5 KB) * 3600 = approximately 1500 MB

where:
50 = the message pair rate per second
(2 * (1 + 1.3) KB) = the amount of data logged for each message pair
1.4 KB = the overhead for each batch of messages

received by each channel
2.5 KB = the overhead for each batch of messages sent

by each channel

1800 seconds * 2.7 MB per second / 1500 MB per hour = 3.24 hours

Planning for backup and recovery

Chapter 18. Planning for backup and recovery 137

MQSeries recovery and CICS
The recovery of CICS resources is not affected by the presence of MQSeries. CICS
recognizes MQSeries as a non-CICS resource (or external resource manager), and
includes MQSeries as a participant in any syncpoint coordination requests using
the CICS resource manager interface (RMI). For more information about CICS
recovery, see the CICS Recovery and Restart Guide. For information about the CICS
resource manager interface, see the CICS Customization Guide.

MQSeries recovery and IMS
IMS recognizes MQSeries as an external subsystem and as a participant in
syncpoint coordination. IMS recovery for external subsystem resources is described
in the IMS Customization Guide.

Preparing for recovery on an alternative site
In the case of a total loss of an MQSeries computing center, you can recover on
another MQSeries system at a recovery site. To be able to do this, you must
regularly back up the page sets and the logs. As with all data recovery operations,
the objectives of disaster recovery are to lose as little data, workload processing
(updates), and time as possible.

At the recovery site:
v The recovery MQSeries queue manager must have the same name as the lost

queue manager.
v The system parameter module used on the recovery queue manager should

contain the same parameters as the lost queue manager.

The process for disaster recovery is described in the MQSeries for OS/390 System
Administration Guide.

Planning for backup and recovery

138 Concepts and Planning Guide

Part 5. Planning to install MQSeries

Chapter 19. MQSeries Prerequisites 141
Machine requirements 141
Software requirements 141

Additional requirements for some features . . 142
Non-IBM products 142
Clients 142

Delivery 142

Chapter 20. Making MQSeries available 143
Installing MQSeries for OS/390 143

National language support 143
Communications protocol and distributed
queuing 144
Naming conventions 144

Choosing names for queue managers and
queue-sharing groups 145
Choosing names for objects. 145
Choosing names for channels 146

Using command prefix strings. 146
Customizing MQSeries and its adapters 147
Verifying your installation of MQSeries for OS/390 147

Chapter 21. Migrating from previous versions 149
What’s new for this release 149

Queue-sharing groups 149
Channel initiator 149
Commands 150
System parameters 150
System object samples 151
Logs 151
Security 151
Statistics and accounting 151
Operations and control panels 152
Dead-letter queue 152
Application programming 152

What to do when you migrate from a previous
version 153

Reverting to a previous version 154

© Copyright IBM Corp. 1993, 2000 139

140 Concepts and Planning Guide

Chapter 19. MQSeries Prerequisites

This chapter discusses the prerequisite products that you need to install before you
can install and use MQSeries for OS/390.

Machine requirements
MQSeries runs on any IBM® System/390® processor that is capable of running the
required level of OS/390, and which has enough storage to meet the combined
requirements of the programming prerequisites, MQSeries, the access methods, and
the application programs.

Software requirements
This section lists the software requirements for MQSeries. We recommend that you
use one of the packaged offerings of OS/390 from IBM (for example, ServerPac).
This includes most of the products that you will need to run MQSeries on OS/390,
and the integrated products have been verified by IBM.

The list of elements included in OS/390, and the recommended levels of
nonexclusive elements are described in the OS/390 Planning For Installation manual.

MQSeries for OS/390 Version 5.2 requires OS/390 Version 2.6 or later, together
with the products included in OS/390. These include:
v C/C++
v DFSMS™/dfp
v High Level Assembler
v ICSS
v ISPF
v JES
v Language Environment® (previously known as LE/370)
v Security Server (previously known as RACF®)
v SMP/E
v TCP/IP
v TSO/E
v UNIX Services (previously known as OpenEdition®)
v VTAM®

The following list gives the minimum levels required for the optional products that
are not included in OS/390. You might not need all of these products.
v CICS, Version 4.1
v COBOL:

– IBM SAA AD/Cycle® COBOL/370™

– VS COBOL 2, Version 4
– IBM COBOL for OS/390 and VM, Version 2.1
– IBM COBOL for MVS and VM, Version 2.1

v IMS, Version 5.1
v IBM AD/Cycle PL/I for MVS and VM, Version 1.1

© Copyright IBM Corp. 1993, 2000 141

Additional requirements for some features
Some of the features of MQSeries for OS/390 Version 5.2 have additional
requirements. These are listed below:

Queue-sharing groups
v Coupling Facility, Level 9
v DB2, Version 5.1
v OS/390, Version 2.9 or later

CICS bridge (3270 transactions)
v CICS Transaction Server, Release 2 or later. Release 2 requires APAR

PQ32659, Release 3 requires APAR PQ23961.

Internet Gateway

v Internet Connection Secure Server, Version 2.2
v Java, Version 1.1.1
v Web browser that supports HTML 3.2 or later

MQSeries Workflow
v MQSeries Workflow, Version 3.1

Non-IBM products
If you choose to use SOLVE:TCPaccess from Computer Associates in place of IBM’s
TCP/IP, the recommended minimum level is Version 4.1.

Clients
For MQSeries for OS/390 to support clients you need to install the client/server
support code that is provided by the Client Attachment Feature of MQSeries for
OS/390.

Delivery
MQSeries is supplied on either 6250 tape or 3480 cartridge. (It is also available on
4-mm DAT tape for PC/390.) One tape or cartridge contains the product code
together with four language features – U.S. English (mixed case), U.S. English
(uppercase), Japanese, and Simplified Chinese – and the optional CICS mover and
Internet Gateway features. The optional Client Attachment feature is supplied on a
separate tape or cartridge.

Prerequisites

142 Concepts and Planning Guide

Chapter 20. Making MQSeries available

This chapter gives an overview of what you need to do to make MQSeries
available to application programmers, and their applications. It contains the
following sections:
v “Installing MQSeries for OS/390”
v “Customizing MQSeries and its adapters” on page 147
v “Verifying your installation of MQSeries for OS/390” on page 147

If you are migrating from a previous version of MQSeries for OS/390, see
“Chapter 21. Migrating from previous versions” on page 149.

Installing MQSeries for OS/390
MQSeries for OS/390 uses the standard OS/390 installation procedure. It is
supplied with a Program Directory that contains specific instructions for installing
the program on an OS/390 system. You must follow the instructions in the
MQSeries for OS/390 Program Directory. They include not only details of the
installation process, but also information about the prerequisite products and their
service or maintenance levels.

SMP/E, used for installation on the OS/390 platform, validates the service levels
and prerequisite and corequisite products, and maintains the SMP/E history
records to record the installation of MQSeries for OS/390. It loads the MQSeries for
OS/390 libraries and checks that the loads have been successful. You then have to
customize the product to your own requirements.

Before you install MQSeries for OS/390, you must decide the following:
v Whether you are going to install one of the optional national language features.
v Which communications protocol and distributed queuing facility you are going

to use.
v What your naming convention for MQSeries objects will be.
v What command prefix string (CPF) you are going to use for each queue

manager.

You also need to plan how much storage you require in your OS/390 system to
accommodate MQSeries; “Chapter 14. Planning your storage requirements” on
page 107 helps you plan the amount of storage required.

National language support
You can choose one of the following national languages for the MQSeries operator
messages and the MQSeries operations and control panels (including the character
sets used). Each language is identified by a language letter:
C Simplified Chinese
E U.S. English (mixed case)
K Japanese
U U.S. English (uppercase)

The samples, MQSeries commands, and utility control statements are available
only in mixed case U.S. English.

© Copyright IBM Corp. 1993, 2000 143

Communications protocol and distributed queuing
The distributed queuing facility provided with the base product feature of
MQSeries uses native OS/390 communications (APPC or TCP/IP). It can either use
APPC (LU 6.2), TCP/IP from IBM, or SOLVE:TCPaccess. The distributed queuing
facility is also known as the channel initiator and the mover.

Alternatively, you can use CICS ISC for distributed queuing; this facility is also
known as the CICS mover. You must install the CICS mover feature in order to use
it. (This feature is retained for compatibility with previous releases but there will
be no further enhancements to this function. Therefore, you are recommended to
use the channel initiator for distributed queuing.)

You can enable both facilities and use them simultaneously on the same MQSeries
instance. However, the two types will have no knowledge of each other or each
other’s channels, and you must ensure that the channel names they use are
distinct.

If you want to use clients, the client attachment feature is needed as well (but you
can administer clients without it).

Whichever mover you choose, you must perform the following tasks to enable
distributed queuing:
v Choose which communications interface to use. This can be:

– APPC (LU 6.2)
– IBM TCP/IP OpenEdition sockets
– SOLVE:TCPaccess (native, IUCV, or OpenEdition sockets)

v Customize the distributed queuing facility and define the MQSeries objects
required.

v Define access security.
v Set up your communications. This includes setting up your TCPIP.DATA data set

if you are using TCP/IP, LU names and side information if you are using APPC,
and CICS definitions if you are using CICS. This is described in the MQSeries
Intercommunication manual.

Naming conventions
It is advisable to establish a set of naming conventions when planning your
MQSeries systems. The names you choose will probably be used on different
platforms, so you should follow the convention for MQSeries, not for the particular
platform.

MQSeries allows both uppercase and lowercase letters in names, and the names are
case sensitive. However, some OS/390 consoles fold names to uppercase so do not
use lowercase characters for names unless you are sure that this will not happen.

You can also use numeric characters and the period (.), forward slash (/),
underscore (_) and percent (%) characters. The percent sign is a special character to
RACF, so you should not use it in names if you are using RACF as your External
Security Manager. You should not use leading or trailing underscore characters if
you are planning to use the Operations and Control panels.

Rules for naming MQSeries objects are described in the MQSeries MQSC Command
Reference manual.

Making MQSeries available

144 Concepts and Planning Guide

Choosing names for queue managers and queue-sharing groups
Each queue manager and queue-sharing group within a network must have a
unique name. On OS/390 the names of queue managers and queue-sharing groups
can be up to four characters long. Each DB2 system and data-sharing group within
the network must also have a unique name.

The queue manager name is the same as the OS/390 subsystem name. You could
identify each subsystem as a queue manager by giving it the name QMxx (where xx
is a distinguishing identifier), or you could choose a naming convention similar to
ADDX, where A signifies the geographic area, DD signifies the company division, and
X is a distinguishing identifier.

You might want to use your naming convention to distinguish between queue
managers and queue-sharing groups. For example, you could identify each
queue-sharing group by giving it the name QGxx (where xx is the distinguishing
identifier).

Choosing names for objects
Queues, processes, namelists, and clusters can have names up to 48 characters
long. Channels can have names up to 20 characters long and storage classes can
have names up to 8 characters long.

If possible, choose meaningful names within any constraints of your local
conventions. Any structure or hierarchy within names is ignored by MQSeries,
however, hierarchical names can be useful for system management. You can also
specify a description of the object when you define it to give more information
about its purpose.

Each object must have a unique name within its object type. However, each object
type has a separate name space, so you can define objects of different types with
the same name. For example, if a queue has an associated process definition, it is a
good idea to give the queue and the process the same name. It is also a good idea
to give a transmission queue the same name as its destination queue manager.

You could also use the naming convention to identify whether the object definition
is private or a global. For example, you could call a namelist project_group.global
to indicate that the definition is stored on the shared repository.

Application queues: Choosing names that describe the function of each queue
helps you to manage these queues more easily. For example, you could call a
queue for inquiries about the company payroll payroll_inquiry. The reply-to
queue for responses to the inquiries could be called payroll_inquiry_reply.

You can use a prefix to group related queues. This means that you can specify
groups of queues for administration tasks like managing security and using the
dead-letter queue handler. For example, all the queues that belong to the payroll
application could be prefixed by payroll_. You can then define a single security
profile to protect all queues with names beginning with this prefix.

You can also use your naming convention to indicate that a queue is a shared
queue. For example, if the payroll inquiry queue mentioned above was a shared
queue, you could call it payroll_inquiry.shared.

Making MQSeries available

Chapter 20. Making MQSeries available 145

Storage classes and Coupling Facility structures: The character set you can use
when naming storage classes and Coupling Facility structures is limited to
uppercase alphabetic and numeric characters. You should be systematic when
choosing names for these objects.

Storage class names can be up to 8 characters long, and must begin with an
alphabetic character. You will probably not define many storage classes, so a
simple name is sufficient. For example, a storage class for IMS bridge queues could
be called IMS.

Coupling Facility structure names can be up to 16 characters long. The first four
characters are the name of the queue-sharing group. The subsequent characters can
be alphabetic or numeric. You could use the name to indicate something about the
shared queues associated with the Coupling Facility structure (that they all belong
to one suite of applications for example). Alternatively, you could use a system
similar to those suggested for queue manager names.

Choosing names for channels
To help you manage channels, it is a good idea if the channel name includes the
names of the source and target queue managers. For example, a channel
transmitting messages from a queue manager called QM27 to a queue manager
called QM11 might be called QM27/QM11.

If your network supports both TCP and SNA, you might also want to include the
transport type in the channel name, for example QM27/QM11_TCP. You could also
indicate whether the channel is a shared channel, for example
QM27/QM11_TCP.shared.

Remember that channel names cannot be longer than 20 characters. If you are
communicating with a queue manager on a different platform, where the name of
the queue manager might contain more than 4 characters, you might not be able to
include the whole name in the name of the channel.

Using command prefix strings
Each instance of MQSeries that you install must have its own command prefix string
(CPF). You use the CPF to identify the OS/390 subsystem that commands are
intended for. It also identifies the OS/390 subsystem from which messages sent to
the console originate.

You can issue all MQSeries commands from an authorized console by inserting the
CPF before the command. If you enter commands via the system command input
queue (for example, using CSQUTIL), or use the MQSeries operations and control
panels, you do not use the CPF.

To start a subsystem called CSQ1 whose CPF is ‘+CSQ1’, issue the command
+CSQ1 START QMGR from the operator console (the space between the CPF and the
command is optional).

The CPF also identifies the subsystem that is returning operator messages. The
following example shows +CSQ1 as the CPF between the message number and the
message text.

CSQ9022I +CSQ1 CSQNCDSP ' DISPLAY CMDSERV' NORMAL COMPLETION

Making MQSeries available

146 Concepts and Planning Guide

See the MQSeries for OS/390 System Setup Guide for information about defining
command prefix strings.

Customizing MQSeries and its adapters
MQSeries requires some customization after installation in order to meet the
individual and special requirements of your system, and to use your system
resources in the most effective way. These are the tasks that you must perform
when you customize your system:
1. Identify the OS/390 system parameters
2. Review the number of system LXs
3. Define the MQSeries subsystem to OS/390
4. Update the OS/390 link list and LPA
5. APF authorize the MQSeries load libraries
6. Update the OS/390 program properties table
7. Create procedures for the MQSeries subsystem
8. Create procedures for the channel initiator
9. Set up the DB2 environment

10. Set up the Coupling Facility
11. Implement your ESM security controls
12. Customize the initialization input data sets
13. Create the bootstrap and log data sets
14. Define your page sets
15. Run the queue-sharing group utility
16. Tailor your system parameter module
17. Tailor the channel initiator parameter module
18. Set up Batch, TSO, and RRS adapters
19. Set up the operations and control panels
20. Include the MQSeries dump formatting member
21. Suppress information messages

These tasks are described in detail in the MQSeries for OS/390 System Setup Guide.

Verifying your installation of MQSeries for OS/390
After the installation and customization has been completed, you can use the
installation verification programs (IVPs) supplied with MQSeries to verify that the
installation has been completed successfully. The IVPs supplied are assembler
language programs and should be run after MQSeries has been customized to suit
your needs. They are described in the MQSeries for OS/390 System Setup Guide.

Making MQSeries available

Chapter 20. Making MQSeries available 147

148 Concepts and Planning Guide

Chapter 21. Migrating from previous versions

This chapter is for people who are planning to migrate from a previous version of
MQSeries for OS/390. It contains the following sections:
v “What’s new for this release”
v “What to do when you migrate from a previous version” on page 153

What’s new for this release
This section describes the new function that has been added for this release of
MQSeries for OS/390.

Queue-sharing groups
v You can group your queue managers into a queue-sharing group. These queue

managers can access the same set of shared queues. This is described in
“Chapter 2. Shared queues and queue-sharing groups” on page 11.

v A new system parameter (QSGDATA) sets the queue-sharing group parameters
for your queue manager. This is described in the MQSeries for OS/390 System
Setup Guide.

v You can now define an object once on one queue manager and then use the
object definition on other queue managers in the queue-sharing group. This is
described in “Private and global definitions” on page 73.

v You can now send commands to all queue managers in a queue-sharing group
by issuing the command on one member of the group. This is described in
“Directing commands to different queue managers” on page 75.

v You can now use intra-group queuing to send messages between queue
managers in a queue-sharing group, without setting up channels. This is
described in “Intra-group queuing” on page 20.

Channel initiator
v You can now use shared channels. This is described in “Distributed queuing and

queue-sharing groups” on page 18.
v You can now stop a receiver channel automatically and start a new one in its

place when a request to start a duplicate receiver channel is received by using
the ADOPTMCA and ADOPTCHK parameters of the CSQ6CHIP channel
initiator parameter macro. This is described in the MQSeries Intercommunication
manual; CSQ6CHIP is described in the MQSeries for OS/390 System Setup Guide.
(This function was available as a PTF for previous releases.)

v You can now specify a range of port numbers to be used when binding
outbound channels by using the OPORTMIN and OPORTMAX parameters of
the CSQ6CHIP channel initiator parameter macro. This is described in the
MQSeries for OS/390 System Setup Guide. (This function was available as a PTF
for previous releases.)

v You can now specify a single IP address upon which the TCP/IP listener accepts
inbound connection requests. This is described in the MQSeries MQSC Command
Reference.

v You can now specify that a TCP listener should register with Workload Manager
for Dynamic Domain Name Services by using the DNSWLM and DNSGROUP
parameters of the CSQ6CHIP channel initiator parameter macro. This is
described in the MQSeries for OS/390 System Setup Guide.

© Copyright IBM Corp. 1993, 2000 149

v You can now specify an LU name that is defined as part of a generic resource
for an LU 6.2 listener by using the LUGROUP parameter of the CSQ6CHIP
channel initiator parameter macro. This is described in the MQSeries for OS/390
System Setup Guide.

Commands
v The following commands have been added:

CLEAR QLOCAL Clear messages from a local queue.

DISPLAY GROUP Display information about the queue-sharing group to
which the queue manager is connected.

DISPLAY QSTATUS Display queue status information.

MOVE QLOCAL Move messages from one queue to another.

RESET QSTATS Display information about how many messages have been
put to and retrieved from a queue.

These commands are described in the MQSeries MQSC Command Reference.
v The QSGDISP attribute has been added to many commands to specify the object

disposition (described in “Private and global definitions” on page 73).
v The CHLDISP attribute has been added to the channel commands to specify the

channel disposition (described in the MQSeries MQSC Command Reference).
v The CMDSCOPE attribute has been added to most commands to specify the

command scope (described in “Directing commands to different queue
managers” on page 75).

v The responses to many commands have changed.

System parameters
v The following new system parameters have been added (they are all described

elsewhere in this chapter):

CSQ6SYSP QSGDATA, RESAUDIT

CSQ6LOGP DEALLCT, MAXRTU

CSQ6ARVP UNIT2

v The default settings for the following system parameters have changed:

CSQ6SYSP The default for LOGLOAD is now 500 000.

CSQ6LOGP The default for INBUFF is now 60 KB and the default for
OUTBUFF is now 4 000 KB.

These are described in the MQSeries for OS/390 System Setup Guide.
v The MAXALLC parameter of CSQ6LOGP is no longer used.

Migrating from previous versions

150 Concepts and Planning Guide

System object samples
v A new system object sample (CSQ4INSS) that defines the objects required for

queue-sharing groups has been added (described in “CSQ4INSS system object
sample” on page 45).

v The default buffer pool, storage class and page set definitions have been
changed. These are explained in the CSQ4INP1 and CSQ4INYG sample data sets
(described in “Sample definitions supplied with MQSeries” on page 45).

v The sample object data set for the basic IVP has been renamed to CSQ4IVPQ,
and a new sample object data set called CSQ4IVPG has been added for the
queue-sharing group IVP.

v The default region sizes have been increased to 0M for the queue manager and
channel initiator address spaces.

Logs
v The default settings for log placement and size have been changed. These

changes are described in the CSQ4BSDS sample data set.
v You can now specify that you want both copies of the archive log to be written

to different device types by using the UNIT and UNIT2 parameters of the
CSQ6ARVP system parameter macro. This is described in the MQSeries for
OS/390 System Setup Guide.

v You can now restart the log archive process after a failure by using the
ARCHIVE LOG CANCEL OFFLOAD command. This command is described in
the MQSeries MQSC Command Reference.

v You can now optimize archive log reading from tape devices using the
MAXRTU and DEALLCT parameters of the CSQ6LOGP system parameter
macro. You can display and reset these parameters using the DISPLAY LOG and
SET LOG commands. CSQ6LOGP is described in the MQSeries for OS/390 System
Setup Guide; the commands are described in the MQSeries MQSC Command
Reference.

Security
v You can now use one set of security profiles to control security for all the queue

managers in a queue-sharing group. This is described in “Queue manager or
queue-sharing group level checking” on page 62.

v You can now control whether RACF audit records are written for RESLEVEL
security checks using the RESAUDIT parameter of the CSQ6SYSP system
parameter module. This is described in the MQSeries for OS/390 System Setup
Guide.

Statistics and accounting
v You can now use the SMF data collection broadcast to gather MQSeries statistics

and accounting records. This is described in the MQSeries for OS/390 System
Setup Guide.

v You can now gather performance statistics for the Coupling Facility manager
and DB2 manager. This is described in the MQSeries for OS/390 System Setup
Guide.

v You can now gather accounting data at queue and thread level. This is described
in the MQSeries for OS/390 System Setup Guide.

Migrating from previous versions

Chapter 21. Migrating from previous versions 151

Operations and control panels
v The operations and control panels have been changed extensively to include the

new function. For example, you are now asked to enter the disposition of objects
that you are working with, and this information is included when you use the
panels to display an object. This is described in the MQSeries for OS/390 System
Administration Guide and in the help supplied with the operations and control
panels.

v The DEFINE action has been changed to DEFINE LIKE.
v You can now get and collate information for the whole queue-sharing group.
v You can now display queue status information.

Dead-letter queue
There is a new utility program (CSQUDLQH) which processes messages on the
dead-letter queue. This is described in the MQSeries for OS/390 System
Administration Guide.

Application programming
v MQSeries messages can now be up to 100 MB in length. (This function was

available as a PTF for previous releases.)
v The Application Messaging Interface (AMI) provides a simple interface to the

Message Queue Interface (MQI). Application programmers can use this interface
to write applications without needing to understand all the functions available
in the MQI. The functions that are required in a particular installation are
defined by a system administrator. This function is described in the MQSeries
Application Messaging Interface manual.

v The MQRC_STORAGE_MEDIUM_FULL return code has been added. This is
described in the MQSeries Application Programming Reference.

v New code pages have been added, including one for UNICODE. These are
described in the MQSeries Application Programming Reference.

v You can now specify options when you connect to a queue manager using the
MQCONNX call. This is described in the MQSeries Application Programming
Reference.

Migrating from previous versions

152 Concepts and Planning Guide

What to do when you migrate from a previous version
When you migrate from a previous version of MQSeries for OS/390, you can
continue to use your existing subsystems with the new version, including their
page sets, log data sets, object definitions, and initialization input data sets. You
can continue to use your existing queues, including system queues such as the
SYSTEM.CHANNEL.SYNCQ. You should not cold start your queue managers
when migrating from a previous version because you do not need to. If you do,
you will lose all your messages and other information such as channel state.

However, there are some tasks that you need to perform when migrating from a
previous version. Whether you need to perform each task depends on which of the
new features you want to use, and which level of MQSeries you are migrating
from. Generally, you need to perform more tasks if you are migrating from a
version of MQSeries that was not the previous version (that is, Version 1.2 or
earlier); however, you do not need to install the intervening versions.

The following list introduces the tasks that you might have to perform when
migrating from Version 2.1 to Version 5.2. These tasks are described in the
MQSeries for OS/390 System Setup Guide.
v Check levels of prerequisite and corequisite software.
v Check and update your system parameter macros if you want to use some of the

new functions.
v Check and update your channel initiator parameter macro if you want to use

some of the new functions.
v Customize and include new sample initialization data set CSQ4INSS if you want

to use queue-sharing groups.
v Review sample initialization data set CSQ4INYG to see if you want to use the

new default buffer pool, storage class, and page set definitions.
v Review sample data set CSQ4BSDS to see if you want to use the new default

settings for log placement and size.
v Customize and include new sample data set CSQ4IVPG if you want to run the

IVP for queue-sharing groups. (Note that the sample data set for the basic IVP
has been renamed to CSQ4IVPQ.)

v Check and change names for renamed MQSeries libraries in STEPLIBs.
v Migrate queues and queue definitions to shared queues, if required.
v Check and change RBA values if you are using the NEWLOG function of the

change log utility.
v Use MQRC_STORAGE_MEDIUM_FULL in place of MQRC_PAGESET_FULL.
v If you are using data conversion exits written for MQSeries for OS/390 Version

2.1, they will continue to function correctly with Version 5.2. However, they are
unable to convert messages containing text using the Unicode UCS-2 coded
character sets (1200, 13488, 17584) and need to be updated to do so. This is
described in the MQSeries for OS/390 System Setup Guide.

See the MQSeries for OS/390 System Setup Guide for information about the
additional tasks you might need to perform if you are migrating from Version 1.2
or Version 1.1.4.

Migrating from previous versions

Chapter 21. Migrating from previous versions 153

Reverting to a previous version
After you have migrated to Version 5.2 of MQSeries for OS/390, it is possible to
revert to using Version 2.1 or Version 1.2 if exceptional circumstances so dictate.
However, to do this you need to apply a PTF to the previous version. This is
described in the MQSeries for OS/390 System Setup Guide.

Migrating from previous versions

154 Concepts and Planning Guide

Part 6. Appendixes

© Copyright IBM Corp. 1993, 2000 155

156 Concepts and Planning Guide

Appendix A. Macros intended for customer use

The macros identified in this appendix are provided as programming interfaces for
customers by MQSeries.

Note: Do not use as programming interfaces any MQSeries macros other than
those identified in this appendix.

General-use programming interface macros
The following macros are provided to enable you to write programs that use the
services of MQSeries. The macros are supplied in library thlqual.SCSQMACS.

CMQA
CMQCDA
CMQCFA
CMQCFHA
CMQCFILA
CMQCFINA
CMQCFSLA
CMQCFSTA
CMQCIHA

CMQCXPA
CMQDLHA
CMQDXPA
CMQGMOA
CMQIIHA
CMQMDA
CMQMDEA
CMQODA
CMQPMOA

CMQRMHA
CMQTMA
CMQTMC2A
CMQWCRA
CMQWDRA
CMQWIHA
CMQWPRA
CMQWXPA
CMQXA

CMQXCALA
CMQXCFBA
CMQXCFCA
CMQXCDFA
CMQXCINA
CMQXCVCA
CMQXPA
CMQXQHA
CMQXWDA

Product-sensitive programming interface macros
The following macros are provided to enable you to write programs that use the
services of MQSeries. The macros are supplied in library thlqual.SCSQMACS.

CSQBDEF CSQDQEST CSQDQIST CSQDQJST
CSQDQLST CSQDQMAC CSQDQMST CSQDQPST
CSQDQSST CSQDQWHC CSQDQWHS CSQDQ5ST
CSQDWQ CSQDWTAS CSQQDEFX CSQQLITX

General-use programming interface copy files
The following COBOL copy files are provided to enable you to write programs
that use the services of MQSeries. The copy files are supplied in library
thlqual.SCSQCOBC.

CMQCDL
CMQCDV
CMQCFHL
CMQCFHV
CMQCFILL
CMQCFILV
CMQCFINL
CMQCFINV
CMQCFSLL
CMQCFSLV
CMQCFSTL

CMQCFSTV
CMQCFV
CMQCIHL
CMQCIHV
CMQCXPL
CMQCXPV
CMQDLHL
CMQDLHV
CMQGMOL
CMQGMOV
CMQIIHL

CMQIIHV
CMQMDEL
CMQMDEV
CMQMDL
CMQMDV
CMQODL
CMQODV
CMQPMOL
CMQPMOV
CMQRMHL
CMQRMHV

CMQTML
CMQTMV
CMQTMC2L
CMQTMC2V
CMQWIHL
CMQWIHV
CMQV
CMQXV
CMQXQHL
CMQXQHV

© Copyright IBM Corp. 1993, 2000 157

General-use programming interface include files
The following C include files are provided to enable you to write programs that
use the services of MQSeries. The files are supplied in library thlqual.SCSQC370.

CMQC CMQXC CMQCFC

The following PL/I include files are provided to enable you to write programs that
use the services of MQSeries. The files are supplied in library thlqual.SCSQPLIC.

CMQP CMQEPP CMQXP CMQCFP

Macros

158 Concepts and Planning Guide

Appendix B. Measured usage license charges with MQSeries
for OS/390

Measured Usage License Charges (MULC) is a particular way of charging you for an
IBM product that runs on an OS/390 system, based on how much use you make of
the product. To determine the product usage, the OS/390 system records the
amount of processor time that is used by the product when it executes.

OS/390 can measure how much processing time is spent in doing work on behalf
of the MQSeries queue manager which is handling MQI calls, executing MQSeries
commands, or performing some other action to support the messaging and
queuing functions used by your application programs. The amount of processing
time is recorded in a file at hourly intervals, and the hourly records are totalled at
the end of a month. In this way, the total amount of time that has been used by the
MQSeries for OS/390 product on your behalf is computed, and used to determine
how much you should pay for your use of the MQSeries for OS/390 product that
month.

MULC is implemented as follows:
v When MQSeries for OS/390 is installed, it identifies itself to OS/390, and

requests that the System Management Facilities (SMF) mechanism within OS/390
is to automatically measure how much processor time is used by the MQSeries
for OS/390 product.

v When enabled, the OS/390 usage measurement facility collects usage figures for
each hour of the day, and generates usage records that are added to a report file
on disk.

v At the end of one full month, these usage records are collected by a program,
which generates a report of product usage for the month. This report is used to
determine the charge for the MQSeries for OS/390 product.

More details on MULC can be found in the MVS Support for Measured License
Charges manual.

© Copyright IBM Corp. 1993, 2000 159

160 Concepts and Planning Guide

Appendix C. Notices

This information was developed for products and services offered in the United
States. IBM may not offer the products, services, or features discussed in this
information in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual
property right may be used instead. However, it is the user’s responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1993, 2000 161

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Notices

162 Concepts and Planning Guide

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AD/Cycle AIX BookManager
CICS COBOL/370 DB2
DFSMS eNetwork IBM
IMS Language Environment MQSeries
MVS MVS/DFP MVS/ESA
OpenEdition OS/390 RACF
RAMAC RMF S/390
SupportPac System/390 VTAM

Lotus, Freelance, and Word Pro are trademarks of Lotus Development Corporation
in the United States, or other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

Other company, product, or service names, may be the trademarks or service
marks of others.

Notices

Appendix C. Notices 163

164 Concepts and Planning Guide

Glossary of terms and abbreviations

This glossary defines MQSeries terms and
abbreviations used in this book. If you do not
find the term you are looking for, see the Index or
the IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

This glossary includes terms and definitions from
the American National Dictionary for Information
Systems, ANSI X3.172-1990, copyright 1990 by the
American National Standards Institute (ANSI).
Copies may be purchased from the American
National Standards Institute, 11 West 42 Street,
New York, New York 10036. Definitions are
identified by the symbol (A) after the definition.

A
abend reason code. A 4-byte hexadecimal code that
uniquely identifies a problem with MQSeries for
OS/390. A complete list of MQSeries for OS/390 abend
reason codes and their explanations is contained in the
MQSeries for OS/390 Messages and Codes manual.

active log. See recovery log.

adapter. An interface between MQSeries for OS/390
and TSO, IMS, CICS, or batch address spaces. An
adapter is an attachment facility that enables
applications to access MQSeries services.

address space. The area of virtual storage available for
a particular job.

address space identifier (ASID). A unique,
system-assigned identifier for an address space.

administrator commands. MQSeries commands used
to manage MQSeries objects, such as queues, processes,
and namelists.

affinity. An association between objects that have
some relationship or dependency upon each other.

alert. A message sent to a management services focal
point in a network to identify a problem or an
impending problem.

alert monitor. In MQSeries for OS/390, a component
of the CICS adapter that handles unscheduled events
occurring as a result of connection requests to
MQSeries for OS/390.

alias queue object. An MQSeries object, the name of
which is an alias for a base queue defined to the local
queue manager. When an application or a queue

manager uses an alias queue, the alias name is resolved
and the requested operation is performed on the
associated base queue.

allied address space. See ally.

ally. An OS/390 address space that is connected to
MQSeries for OS/390.

alternate user security. A security feature in which the
authority of one user ID can be used by another user
ID; for example, to open an MQSeries object.

APAR. Authorized program analysis report.

application environment. The software facilities that
are accessible by an application program. On the
OS/390 platform, CICS and IMS are examples of
application environments.

application queue. A queue used by an application.

archive log. See recovery log.

ARM. Automatic Restart Management

ASID. Address space identifier.

asynchronous messaging. A method of
communication between programs in which programs
place messages on message queues. With asynchronous
messaging, the sending program proceeds with its own
processing without waiting for a reply to its message.
Contrast with synchronous messaging.

attribute. One of a set of properties that defines the
characteristics of an MQSeries object.

authorization checks. Security checks that are
performed when a user tries to issue administration
commands against an object, for example to open a
queue or connect to a queue manager.

authorized program analysis report (APAR). A report
of a problem caused by a suspected defect in a current,
unaltered release of a program.

Automatic Restart Management (ARM). An OS/390
recovery function that can improve the availability of
specific batch jobs or started tasks, and therefore result
in faster resumption of productive work.

B
backout. An operation that reverses all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins. Contrast with commit.

© Copyright IBM Corp. 1993, 2000 165

basic mapping support (BMS). An interface between
CICS and application programs that formats input and
output display data and routes multiple-page output
messages without regard for control characters used by
various terminals.

BMS. Basic mapping support.

bootstrap data set (BSDS). A VSAM data set that
contains:

v An inventory of all active and archived log data sets
known to MQSeries for OS/390

v A wrap-around inventory of all recent MQSeries for
OS/390 activity

The BSDS is required if the MQSeries for OS/390
subsystem has to be restarted.

browse. In message queuing, to use the MQGET call
to copy a message without removing it from the queue.
See also get.

browse cursor. In message queuing, an indicator used
when browsing a queue to identify the message that is
next in sequence.

BSDS. Bootstrap data set.

buffer pool. An area of main storage used for
MQSeries for OS/390 queues, messages, and object
definitions. See also page set.

C
call back. In MQSeries, a requester message channel
initiates a transfer from a sender channel by first calling
the sender, then closing down and awaiting a call back.

CCF. Channel control function.

CCSID. Coded character set identifier.

CDF. Channel definition file.

channel. See message channel.

channel control function (CCF). In MQSeries, a
program to move messages from a transmission queue
to a communication link, and from a communication
link to a local queue, together with an operator panel
interface to allow the setup and control of channels.

channel definition file (CDF). In MQSeries, a file
containing communication channel definitions that
associate transmission queues with communication
links.

channel event. An event indicating that a channel
instance has become available or unavailable. Channel
events are generated on the queue managers at both
ends of the channel.

checkpoint. A time when significant information is
written on the log. Contrast with syncpoint.

CI. Control interval.

CL. Control Language.

client. A run-time component that provides access to
queuing services on a server for local user applications.
The queues used by the applications reside on the
server. See also MQSeries client.

client application. An application, running on a
workstation and linked to a client, that gives the
application access to queuing services on a server.

client connection channel type. The type of MQI
channel definition associated with an MQSeries client.
See also server connection channel type.

cluster. A network of queue managers that are
logically associated in some way.

cluster queue. A queue that is hosted by a cluster
queue manager and made available to other queue
managers in the cluster.

cluster queue manager. A queue manager that is a
member of a cluster. A queue manager may be a
member of more than one cluster.

cluster transmission queue. A transmission queue
that transmits all messages from a queue manager to
any other queue manager that is in the same cluster.
The queue is called
SYSTEM.CLUSTER.TRANSMIT.QUEUE.

coded character set identifier (CCSID). The name of a
coded set of characters and their code point
assignments.

command. In MQSeries, an administration instruction
that can be carried out by the queue manager.

command prefix (CPF). In MQSeries for OS/390, a
character string that identifies the queue manager to
which MQSeries for OS/390 commands are directed,
and from which MQSeries for OS/390 operator
messages are received.

command processor. The MQSeries component that
processes commands.

command server. The MQSeries component that reads
commands from the system-command input queue,
verifies them, and passes valid commands to the
command processor.

commit. An operation that applies all the changes
made during the current unit of recovery or unit of
work. After the operation is complete, a new unit of
recovery or unit of work begins. Contrast with backout.

Glossary

166 Concepts and Planning Guide

completion code. A return code indicating how an
MQI call has ended.

connect. To provide a queue manager connection
handle, which an application uses on subsequent MQI
calls. The connection is made either by the MQCONN
or MQCONNX call, or automatically by the MQOPEN
call.

connection handle. The identifier or token by which a
program accesses the queue manager to which it is
connected.

context. Information about the origin of a message.

context security. In MQSeries, a method of allowing
security to be handled such that messages are obliged
to carry details of their origins in the message
descriptor.

control interval (CI). A fixed-length area of direct
access storage in which VSAM stores records and
creates distributed free spaces. The control interval is
the unit of information that VSAM transmits to or from
direct access storage.

controlled shutdown. See quiesced shutdown.

CPF. Command prefix.

Cross Systems Coupling Facility (XCF). Provides the
OS/390 coupling services that allow authorized
programs in a multisystem environment to
communicate with programs on the same or different
OS/390 systems.

coupling facility. On OS/390, a special logical
partition that provides high-speed caching, list
processing, and locking functions in a parallel sysplex.

D
datagram. The simplest message that MQSeries
supports. This type of message does not require a reply.

DCI. Data conversion interface.

dead-letter queue (DLQ). A queue to which a queue
manager or application sends messages that it cannot
deliver to their correct destination.

default object. A definition of an object (for example,
a queue) with all attributes defined. If a user defines an
object but does not specify all possible attributes for
that object, the queue manager uses default attributes
in place of any that were not specified.

deferred connection. A pending event that is activated
when a CICS subsystem tries to connect to MQSeries
for OS/390 before MQSeries for OS/390 has been
started.

dequeue. To remove a message from a queue.
Contrast with enqueue.

distributed application. In message queuing, a set of
application programs that can each be connected to a
different queue manager, but that collectively constitute
a single application.

distributed queue management (DQM). In message
queuing, the setup and control of message channels to
queue managers on other systems.

DLQ. Dead-letter queue.

DQM. Distributed queue management.

dual logging. A method of recording MQSeries for
OS/390 activity, where each change is recorded on two
data sets, so that if a restart is necessary and one data
set is unreadable, the other can be used. Contrast with
single logging.

dual mode. See dual logging.

dynamic queue. A local queue created when a
program opens a model queue object. See also
permanent dynamic queue and temporary dynamic queue.

E
enqueue. To put a message on a queue. Contrast with
dequeue.

environment. See application environment.

ESM. External security manager.

event. See channel event, instrumentation event,
performance event, and queue manager event.

event data. In an event message, the part of the
message data that contains information about the event
(such as the queue manager name, and the application
that gave rise to the event). See also event header.

event header. In an event message, the part of the
message data that identifies the event type of the
reason code for the event.

event message. Contains information (such as the
category of event, the name of the application that
caused the event, and queue manager statistics) relating
to the origin of an instrumentation event in a network
of MQSeries systems.

event queue. The queue onto which the queue
manager puts an event message after it detects an
event. Each category of event (queue manager,
performance, or channel event) has its own event
queue.

Glossary

Glossary of terms and abbreviations 167

external security manager (ESM). A security product
that is invoked by the OS/390 System Authorization
Facility. RACF is an example of an ESM.

F
FIFO. First-in-first-out.

first-in-first-out (FIFO). A queuing technique in which
the next item to be retrieved is the item that has been
in the queue for the longest time. (A)

forced shutdown. A type of shutdown of the CICS
adapter where the adapter immediately disconnects
from MQSeries for OS/390, regardless of the state of
any currently active tasks. Contrast with quiesced
shutdown.

G
GCPC. Generalized command preprocessor.

generalized command preprocessor (GCPC). An
MQSeries for OS/390 component that processes
MQSeries commands and runs them.

Generalized Trace Facility (GTF). An OS/390 service
program that records significant system events, such as
supervisor calls and start I/O operations, for the
purpose of problem determination.

get. In message queuing, to use the MQGET call to
remove a message from a queue.

global trace. An MQSeries for OS/390 trace option
where the trace data comes from the entire MQSeries
for OS/390 subsystem.

globally-defined object. On OS/390, an object whose
definition is stored in the shared repository. The object
is available to all queue managers in the queue-sharing
group. See also locally-defined object.

GTF. Generalized Trace Facility.

H
handle. See connection handle and object handle.

hardened message. A message that is written to
auxiliary (disk) storage so that the message will not be
lost in the event of a system failure. See also persistent
message.

I
immediate shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for applications to
disconnect. Current MQI calls are allowed to complete,

but new MQI calls fail after an immediate shutdown
has been requested. Contrast with quiesced shutdown
and preemptive shutdown.

inbound channel. A channel that listens for and
receives messages from another queue manager. See
also shared inbound channel.

in-doubt unit of recovery. In MQSeries, the status of a
unit of recovery for which a syncpoint has been
requested but not yet confirmed.

initialization input data sets. Data sets used by
MQSeries for OS/390 when it starts up.

initiation queue. A local queue on which the queue
manager puts trigger messages.

input/output parameter. A parameter of an MQI call
in which you supply information when you make the
call, and in which the queue manager changes the
information when the call completes or fails.

input parameter. A parameter of an MQI call in which
you supply information when you make the call.

instrumentation event. A facility that can be used to
monitor the operation of queue managers in a network
of MQSeries systems. MQSeries provides
instrumentation events for monitoring queue manager
resource definitions, performance conditions, and
channel conditions. Instrumentation events can be used
by a user-written reporting mechanism in an
administration application that displays the events to a
system operator. They also allow applications acting as
agents for other administration networks to monitor
reports and create the appropriate alerts.

Interactive Problem Control System (IPCS). A
component of OS/390 that permits online problem
management, interactive problem diagnosis, online
debugging for disk-resident abend dumps, problem
tracking, and problem reporting.

Interactive System Productivity Facility (ISPF). An
IBM licensed program that serves as a full-screen editor
and dialog manager. It is used for writing application
programs, and provides a means of generating
standard screen panels and interactive dialogues
between the application programmer and terminal user.

IPCS. Interactive Problem Control System.

ISPF. Interactive System Productivity Facility.

L
listener. In MQSeries distributed queuing, a program
that monitors for incoming network connections.

local definition. An MQSeries object belonging to a
local queue manager.

Glossary

168 Concepts and Planning Guide

local definition of a remote queue. An MQSeries
object belonging to a local queue manager. This object
defines the attributes of a queue that is owned by
another queue manager. In addition, it is used for
queue-manager aliasing and reply-to-queue aliasing.

local queue. A queue that belongs to the local queue
manager. A local queue can contain a list of messages
waiting to be processed. Contrast with remote queue.

local queue manager. The queue manager to which a
program is connected and that provides message
queuing services to the program. Queue managers to
which a program is not connected are called remote
queue managers, even if they are running on the same
system as the program.

locally-defined object. On OS/390, an object whose
definition is stored on page set zero. The definition can
be accessed only by the queue manager that defined it.
Also known as a privately-defined object.

log. In MQSeries, a file recording the work done by
queue managers while they receive, transmit, and
deliver messages, to enable them to recover in the
event of failure.

logical unit of work (LUW). See unit of work.

M
machine check interrupt. An interruption that occurs
as a result of an equipment malfunction or error. A
machine check interrupt can be either hardware
recoverable, software recoverable, or nonrecoverable.

MCA. Message channel agent.

MCI. Message channel interface.

message. In message queuing applications, a
communication sent between programs. In system
programming, information intended for the terminal
operator or system administrator.

message channel. In distributed message queuing, a
mechanism for moving messages from one queue
manager to another. A message channel comprises two
message channel agents (a sender at one end and a
receiver at the other end) and a communication link.
Contrast with MQI channel.

message channel agent (MCA). A program that
transmits prepared messages from a transmission
queue to a communication link, or from a
communication link to a destination queue. See also
message queue interface.

message channel interface (MCI). The MQSeries
interface to which customer- or vendor-written
programs that transmit messages between an MQSeries
queue manager and another messaging system must
conform. A part of the MQSeries Framework.

message descriptor. Control information describing
the message format and presentation that is carried as
part of an MQSeries message. The format of the
message descriptor is defined by the MQMD structure.

message priority. In MQSeries, an attribute of a
message that can affect the order in which messages on
a queue are retrieved, and whether a trigger event is
generated.

message queue. Synonym for queue.

message queue interface (MQI). The programming
interface provided by the MQSeries queue managers.
This programming interface allows application
programs to access message queuing services.

message queuing. A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

message sequence numbering. A programming
technique in which messages are given unique numbers
during transmission over a communication link. This
enables the receiving process to check whether all
messages are received, to place them in a queue in the
original order, and to discard duplicate messages.

messaging. See synchronous messaging and asynchronous
messaging.

model queue object. A set of queue attributes that act
as a template when a program creates a dynamic
queue.

MQI. Message queue interface.

MQI channel. Connects an MQSeries client to a queue
manager on a server system, and transfers only MQI
calls and responses in a bidirectional manner. Contrast
with message channel.

MQSC. MQSeries commands.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

N
namelist. An MQSeries object that contains a list of
names, for example, queue names.

nonpersistent message. A message that does not
survive a restart of the queue manager. Contrast with
persistent message.

null character. The character that is represented by
X'00'.

Glossary

Glossary of terms and abbreviations 169

O
object. In MQSeries, an object is a queue manager, a
queue, a process definition, a channel, a namelist, or a
storage class (OS/390 only).

object descriptor. A data structure that identifies a
particular MQSeries object. Included in the descriptor
are the name of the object and the object type.

object handle. The identifier or token by which a
program accesses the MQSeries object with which it is
working.

off-loading. In MQSeries for OS/390, an automatic
process whereby a queue manager’s active log is
transferred to its archive log.

Open Transaction Manager Access (OTMA). A
transaction-based, connectionless client/server protocol.
It functions as an interface for host-based
communications servers accessing IMS TM applications
through the OS/390 Cross Systems Coupling Facility
(XCF). OTMA is implemented in an OS/390 sysplex
environment. Therefore, the domain of OTMA is
restricted to the domain of XCF.

OTMA. Open Transaction Manager Access.

outbound channel. A channel that takes messages
from a transmission queue and sends them to another
queue manager. See also shared outbound channel.

output log-buffer. In MQSeries for OS/390, a buffer
that holds recovery log records before they are written
to the archive log.

output parameter. A parameter of an MQI call in
which the queue manager returns information when
the call completes or fails.

P
page set. A VSAM data set used when MQSeries for
OS/390 moves data (for example, queues and
messages) from buffers in main storage to permanent
backing storage (DASD).

pending event. An unscheduled event that occurs as a
result of a connect request from a CICS adapter.

percolation. In error recovery, the passing along a
preestablished path of control from a recovery routine
to a higher-level recovery routine.

performance event. A category of event indicating
that a limit condition has occurred.

performance trace. An MQSeries trace option where
the trace data is to be used for performance analysis
and tuning.

permanent dynamic queue. A dynamic queue that is
deleted when it is closed only if deletion is explicitly
requested. Permanent dynamic queues are recovered if
the queue manager fails, so they can contain persistent
messages. Contrast with temporary dynamic queue.

persistent message. A message that survives a restart
of the queue manager. Contrast with nonpersistent
message.

ping. In distributed queuing, a diagnostic aid that
uses the exchange of a test message to confirm that a
message channel or a TCP/IP connection is
functioning.

platform. In MQSeries, the operating system under
which a queue manager is running.

point of recovery. In MQSeries for OS/390, the term
used to describe a set of backup copies of MQSeries for
OS/390 page sets and the corresponding log data sets
required to recover these page sets. These backup
copies provide a potential restart point in the event of
page set loss (for example, page set I/O error).

preemptive shutdown. In MQSeries, a shutdown of a
queue manager that does not wait for connected
applications to disconnect, nor for current MQI calls to
complete. Contrast with immediate shutdown and
quiesced shutdown.

privately-defined object. In OS/390, an object whose
definition is stored on page set zero. The definition can
be accessed only by the queue manager that defined it.
Also known as a locally-defined object.

process definition object. An MQSeries object that
contains the definition of an MQSeries application. For
example, a queue manager uses the definition when it
works with trigger messages.

Q
queue. An MQSeries object. Message queuing
applications can put messages on, and get messages
from, a queue. A queue is owned and maintained by a
queue manager. Local queues can contain a list of
messages waiting to be processed. Queues of other
types cannot contain messages—they point to other
queues, or can be used as models for dynamic queues.

queue manager. A system program that provides
queuing services to applications. It provides an
application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. An MQSeries object that defines the
attributes of a particular queue manager.

queue manager event. An event that indicates:

Glossary

170 Concepts and Planning Guide

v An error condition has occurred in relation to the
resources used by a queue manager. For example, a
queue is unavailable.

v A significant change has occurred in the queue
manager. For example, a queue manager has stopped
or started.

queue-sharing group. In MQSeries for OS/390, a
group of queue managers in the same sysplex that can
access a single set of object definitions stored in the
shared repository, and a single set of shared queues
stored in the coupling facility. See also shared queue.

queuing. See message queuing.

quiesced shutdown. In MQSeries, a shutdown of a
queue manager that allows all connected applications
to disconnect. Contrast with immediate shutdown and
preemptive shutdown. A type of shutdown of the CICS
adapter where the adapter disconnects from MQSeries,
but only after all the currently active tasks have been
completed. Contrast with forced shutdown.

quiescing. In MQSeries, the state of a queue manager
prior to it being stopped. In this state, programs are
allowed to finish processing, but no new programs are
allowed to start.

R
RBA. Relative byte address.

reason code. A return code that describes the reason
for the failure or partial success of an MQI call.

receiver channel. In message queuing, a channel that
responds to a sender channel, takes messages from a
communication link, and puts them on a local queue.

recovery log. In MQSeries for OS/390, data sets
containing information needed to recover messages,
queues, and the MQSeries subsystem. MQSeries for
OS/390 writes each record to a data set called the active
log. When the active log is full, its contents are
off-loaded to a DASD or tape data set called the archive
log. Synonymous with log.

relative byte address (RBA). The displacement in
bytes of a stored record or control interval from the
beginning of the storage space allocated to the data set
to which it belongs.

remote queue. A queue belonging to a remote queue
manager. Programs can put messages on remote
queues, but they cannot get messages from remote
queues. Contrast with local queue.

remote queue manager. To a program, a queue
manager that is not the one to which the program is
connected.

remote queue object. See local definition of a remote
queue.

remote queuing. In message queuing, the provision of
services to enable applications to put messages on
queues belonging to other queue managers.

reply message. A type of message used for replies to
request messages. Contrast with request message and
report message.

reply-to queue. The name of a queue to which the
program that issued an MQPUT call wants a reply
message or report message sent.

report message. A type of message that gives
information about another message. A report message
can indicate that a message has been delivered, has
arrived at its destination, has expired, or could not be
processed for some reason. Contrast with reply message
and request message.

repository. A collection of information about the
queue managers that are members of a cluster. This
information includes queue manager names, their
locations, their channels, what queues they host, and so
on.

repository queue manager. A queue manager that
hosts the full repository of information about a cluster.

requester channel. In message queuing, a channel that
may be started remotely by a sender channel. The
requester channel accepts messages from the sender
channel over a communication link and puts the
messages on the local queue designated in the message.
See also server channel.

request message. A type of message used to request a
reply from another program. Contrast with reply
message and report message.

RESLEVEL. In MQSeries for OS/390, an option that
controls the number of CICS user IDs checked for
API-resource security in MQSeries for OS/390.

resolution path. The set of queues that are opened
when an application specifies an alias or a remote
queue on input to an MQOPEN call.

resource. Any facility of the computing system or
operating system required by a job or task. In MQSeries
for OS/390, examples of resources are buffer pools,
page sets, log data sets, queues, and messages.

resource manager. An application, program, or
transaction that manages and controls access to shared
resources such as memory buffers and data sets.
MQSeries, CICS, and IMS are resource managers.

Resource Recovery Services (RRS). An OS/390
facility that provides 2-phase syncpoint support across
participating resource managers.

Glossary

Glossary of terms and abbreviations 171

responder. In distributed queuing, a program that
replies to network connection requests from another
system.

resynch. In MQSeries, an option to direct a channel to
start up and resolve any in-doubt status messages, but
without restarting message transfer.

return codes. The collective name for completion
codes and reason codes.

rollback. Synonym for back out.

RRS. Resource Recovery Services.

S
SAF. System Authorization Facility.

security enabling interface (SEI). The MQSeries
interface to which customer- or vendor-written
programs that check authorization, supply a user
identifier, or perform authentication must conform. A
part of the MQSeries Framework.

SEI. Security enabling interface.

sender channel. In message queuing, a channel that
initiates transfers, removes messages from a
transmission queue, and moves them over a
communication link to a receiver or requester channel.

sequential delivery. In MQSeries, a method of
transmitting messages with a sequence number so that
the receiving channel can reestablish the message
sequence when storing the messages. This is required
where messages must be delivered only once, and in
the correct order.

sequential number wrap value. In MQSeries, a
method of ensuring that both ends of a communication
link reset their current message sequence numbers at
the same time. Transmitting messages with a sequence
number ensures that the receiving channel can
reestablish the message sequence when storing the
messages.

server. (1) In MQSeries, a queue manager that
provides queue services to client applications running
on a remote workstation. (2) The program that
responds to requests for information in the particular
two-program, information-flow model of client/server.
See also client.

server channel. In message queuing, a channel that
responds to a requester channel, removes messages
from a transmission queue, and moves them over a
communication link to the requester channel.

server connection channel type. The type of MQI
channel definition associated with the server that runs
a queue manager. See also client connection channel type.

service interval. A time interval, against which the
elapsed time between a put or a get and a subsequent
get is compared by the queue manager in deciding
whether the conditions for a service interval event have
been met. The service interval for a queue is specified
by a queue attribute.

service interval event. An event related to the service
interval.

session ID. In MQSeries for OS/390, the CICS-unique
identifier that defines the communication link to be
used by a message channel agent when moving
messages from a transmission queue to a link.

shared inbound channel. In MQSeries for OS/390, a
channel that was started by a listener using the group
port. The channel definition of a shared channel can be
stored either on page set zero (private) or in the shared
repository (global).

shared outbound channel. In MQSeries for OS/390, a
channel that moves messages from a shared
transmission queue. The channel definition of a shared
channel can be stored either on page set zero (private)
or in the shared repository (global).

shared queue. In MQSeries for OS/390, a type of local
queue. The messages on the queue are stored in the
coupling facility and can be accessed by one or more
queue managers in a queue-sharing group. The definition
of the queue is stored in the shared repository.

shared repository. In MQSeries for OS/390, a shared
DB2 database that is used to hold object definitions that
have been defined globally.

shutdown. See immediate shutdown, preemptive
shutdown, and quiesced shutdown.

signaling. In MQSeries for OS/390 and MQSeries for
Windows® 2.1, a feature that allows the operating
system to notify a program when an expected message
arrives on a queue.

single logging. A method of recording MQSeries for
OS/390 activity where each change is recorded on one
data set only. Contrast with dual logging.

single-phase backout. A method in which an action in
progress must not be allowed to finish, and all changes
that are part of that action must be undone.

single-phase commit. A method in which a program
can commit updates to a queue without coordinating
those updates with updates the program has made to
resources controlled by another resource manager.
Contrast with two-phase commit.

SIT. System initialization table.

Glossary

172 Concepts and Planning Guide

storage class. In MQSeries for OS/390, a storage class
defines the page set that is to hold the messages for a
particular queue. The storage class is specified when
the queue is defined.

store and forward. The temporary storing of packets,
messages, or frames in a data network before they are
retransmitted toward their destination.

subsystem. In OS/390, a group of modules that
provides function that is dependent on OS/390. For
example, MQSeries for OS/390 is an OS/390
subsystem.

supervisor call (SVC). An OS/390 instruction that
interrupts a running program and passes control to the
supervisor so that it can perform the specific service
indicated by the instruction.

SVC. Supervisor call.

switch profile. In MQSeries for OS/390, a RACF
profile used when MQSeries starts up or when a
refresh security command is issued. Each switch profile
that MQSeries detects turns off checking for the
specified resource.

synchronous messaging. A method of communication
between programs in which programs place messages
on message queues. With synchronous messaging, the
sending program waits for a reply to its message before
resuming its own processing. Contrast with
asynchronous messaging.

syncpoint. An intermediate or end point during
processing of a transaction at which the transaction’s
protected resources are consistent. At a syncpoint,
changes to the resources can safely be committed, or
they can be backed out to the previous syncpoint.

sysplex. A multiple OS/390-system environment that
allows multiple-console support (MCS) consoles to
receive console messages and send operator commands
across systems.

System Authorization Facility (SAF). An OS/390
facility through which MQSeries for OS/390
communicates with an external security manager such
as RACF.

system.command.input queue. A local queue on
which application programs can put MQSeries
commands. The commands are retrieved from the
queue by the command server, which validates them
and passes them to the command processor to be run.

system control commands. Commands used to
manipulate platform-specific entities such as buffer
pools, storage classes, and page sets.

system initialization table (SIT). A table containing
parameters used by CICS on start up.

T
target library high-level qualifier (thlqual).
High-level qualifier for OS/390 target data set names.

task control block (TCB). An OS/390 control block
used to communicate information about tasks within an
address space that are connected to an OS/390
subsystem such as MQSeries for OS/390 or CICS.

task switching. The overlapping of I/O operations
and processing between several tasks. In MQSeries for
OS/390, the task switcher optimizes performance by
allowing some MQI calls to be executed under subtasks
rather than under the main CICS TCB.

TCB. Task control block.

temporary dynamic queue. A dynamic queue that is
deleted when it is closed. Temporary dynamic queues
are not recovered if the queue manager fails, so they
can contain nonpersistent messages only. Contrast with
permanent dynamic queue.

termination notification. A pending event that is
activated when a CICS subsystem successfully connects
to MQSeries for OS/390.

thlqual. Target library high-level qualifier.

thread. In MQSeries, the lowest level of parallel
execution available on an operating system platform.

time-independent messaging. See asynchronous
messaging.

TMI. Trigger monitor interface.

trace. In MQSeries, a facility for recording MQSeries
activity. The destinations for trace entries can include
GTF and the system management facility (SMF).

tranid. See transaction identifier.

transaction identifier. In CICS, a name that is
specified when the transaction is defined, and that is
used to invoke the transaction.

transmission program. See message channel agent.

transmission queue. A local queue on which prepared
messages destined for a remote queue manager are
temporarily stored.

trigger event. An event (such as a message arriving
on a queue) that causes a queue manager to create a
trigger message on an initiation queue.

triggering. In MQSeries, a facility allowing a queue
manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message. A message containing information
about the program that a trigger monitor is to start.

Glossary

Glossary of terms and abbreviations 173

trigger monitor. A continuously-running application
serving one or more initiation queues. When a trigger
message arrives on an initiation queue, the trigger
monitor retrieves the message. It uses the information
in the trigger message to start a process that serves the
queue on which a trigger event occurred.

trigger monitor interface (TMI). The MQSeries
interface to which customer- or vendor-written trigger
monitor programs must conform. A part of the
MQSeries Framework.

two-phase commit. A protocol for the coordination of
changes to recoverable resources when more than one
resource manager is used by a single transaction.
Contrast with single-phase commit.

U
undo/redo record. A log record used in recovery. The
redo part of the record describes a change to be made
to an MQSeries object. The undo part describes how to
back out the change if the work is not committed.

unit of recovery. A recoverable sequence of operations
within a single resource manager. Contrast with unit of
work.

unit of work. A recoverable sequence of operations
performed by an application between two points of
consistency. A unit of work begins when a transaction
starts or after a user-requested syncpoint. It ends either
at a user-requested syncpoint or at the end of a
transaction. Contrast with unit of recovery.

utility. In MQSeries, a supplied set of programs that
provide the system operator or system administrator
with facilities in addition to those provided by the
MQSeries commands. Some utilities invoke more than
one function.

X
XCF. Cross Systems Coupling Facility.

Glossary

174 Concepts and Planning Guide

Bibliography

This section describes the documentation
available for all current MQSeries products.

MQSeries cross-platform
publications
Most of these publications, which are sometimes
referred to as the MQSeries “family” books, apply
to all MQSeries Level 2 products. The latest
MQSeries Level 2 products are:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for AT&T GIS UNIX V2.2
v MQSeries for Compaq (DIGITAL) OpenVMS,

V2.2.1.1
v MQSeries for Compaq Tru64 UNIX, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V5.2
v MQSeries for SINIX and DC/OSx, V2.2
v MQSeries for Sun Solaris, V5.1
v MQSeries for Sun Solaris, Intel Platform

Edition, V5.1
v MQSeries for Tandem NonStop Kernel, V2.2.0.1
v MQSeries for VSE/ESA V2.1
v MQSeries for Windows V2.0
v MQSeries for Windows V2.1
v MQSeries for Windows NT, V5.1

The MQSeries cross-platform publications are:
v MQSeries Brochure, G511-1908
v An Introduction to Messaging and Queuing,

GC33-0805
v MQSeries Intercommunication, SC33-1872
v MQSeries Queue Manager Clusters, SC34-5349
v MQSeries Clients, GC33-1632
v MQSeries System Administration, SC33-1873
v MQSeries MQSC Command Reference, SC33-1369
v MQSeries Event Monitoring, SC34-5760
v MQSeries Programmable System Management,

SC33-1482
v MQSeries Administration Interface Programming

Guide and Reference, SC34-5390
v MQSeries Messages, GC33-1876
v MQSeries Application Programming Guide,

SC33-0807

v MQSeries Application Programming Reference,
SC33-1673

v MQSeries Programming Interfaces Reference
Summary, SX33-6095

v MQSeries Using C++, SC33-1877
v MQSeries Using Java™, SC34-5456
v MQSeries Application Messaging Interface,

SC34-5604

MQSeries platform-specific
publications
Each MQSeries product is documented in at least
one platform-specific publication, in addition to
the MQSeries family books.

MQSeries for AIX, V5.1

MQSeries for AIX Quick Beginnings,
GC33-1867

MQSeries for AS/400, V5.1

MQSeries for AS/400® Quick Beginnings,
GC34-5557
MQSeries for AS/400 System
Administration, SC34-5558
MQSeries for AS/400 Application
Programming Reference (ILE RPG),
SC34-5559

MQSeries for AT&T GIS UNIX V2.2

MQSeries for AT&T GIS UNIX® System
Management Guide, SC33-1642

MQSeries for Compaq (DIGITAL) OpenVMS,
V2.2.1.1

MQSeries for Digital OpenVMS System
Management Guide, GC33-1791

MQSeries for Compaq Tru64 UNIX, V5.1

MQSeries for Compaq Tru64 UNIX Quick
Beginnings, GC34-5684

MQSeries for HP-UX, V5.1

MQSeries for HP-UX Quick Beginnings,
GC33-1869

MQSeries for OS/2 Warp, V5.1

MQSeries for OS/2 Warp Quick
Beginnings, GC33-1868

© Copyright IBM Corp. 1993, 2000 175

MQSeries for OS/390, V5.2

MQSeries for OS/390 Concepts and
Planning Guide, GC34-5650
MQSeries for OS/390 System Setup
Guide, SC34-5651
MQSeries for OS/390 System
Administration Guide, SC34-5652
MQSeries for OS/390 Problem
Determination Guide, GC34-5892
MQSeries for OS/390 Messages and
Codes, GC34-5891
MQSeries for OS/390 Licensed Program
Specifications, GC34-5893
MQSeries for OS/390 Program Directory

MQSeries link for R/3 Version 1.2

MQSeries link for R/3 User’s Guide,
GC33-1934

MQSeries for SINIX and DC/OSx, V2.2

MQSeries for SINIX and DC/OSx System
Management Guide, GC33-1768

MQSeries for Sun Solaris, V5.1

MQSeries for Sun Solaris Quick
Beginnings, GC33-1870

MQSeries for Sun Solaris, Intel Platform
Edition, V5.1

MQSeries for Sun Solaris, Intel Platform
Edition Quick Beginnings, GC34-5851

MQSeries for Tandem NonStop Kernel, V2.2.0.1

MQSeries for Tandem NonStop Kernel
System Management Guide, GC33-1893

MQSeries for VSE/ESA V2.1

MQSeries for VSE/ESA Version 2 Release
1 Licensed Program Specifications,
GC34-5365
MQSeries for VSE/ESA™ System
Management Guide, GC34-5364

MQSeries for Windows V2.0

MQSeries for Windows User’s Guide,
GC33-1822

MQSeries for Windows V2.1

MQSeries for Windows User’s Guide,
GC33-1965

MQSeries for Windows NT, V5.1

MQSeries for Windows NT Quick
Beginnings, GC34-5389

MQSeries for Windows NT Using the
Component Object Model Interface,
SC34-5387
MQSeries LotusScript Extension,
SC34-5404

Softcopy books
Most of the MQSeries books are supplied in both
hardcopy and softcopy formats.

HTML format
Relevant MQSeries documentation is provided in
HTML format with these MQSeries products:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for Compaq Tru64 UNIX, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V5.2
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1 (compiled

HTML)
v MQSeries link for R/3 V1.2

The MQSeries books are also available in HTML
format from the MQSeries product family Web
site at:

http://www.ibm.com/software/mqseries/

Portable Document Format (PDF)
PDF files can be viewed and printed using the
Adobe Acrobat Reader.

If you need to obtain the Adobe Acrobat Reader,
or would like up-to-date information about the
platforms on which the Acrobat Reader is
supported, visit the Adobe Systems Inc. Web site
at:

http://www.adobe.com/

PDF versions of relevant MQSeries books are
supplied with these MQSeries products:
v MQSeries for AIX, V5.1
v MQSeries for AS/400, V5.1
v MQSeries for Compaq Tru64 UNIX, V5.1
v MQSeries for HP-UX, V5.1
v MQSeries for OS/2 Warp, V5.1
v MQSeries for OS/390, V5.2
v MQSeries for Sun Solaris, V5.1
v MQSeries for Windows NT, V5.1
v MQSeries link for R/3 V1.2

Bibliography

176 Concepts and Planning Guide

PDF versions of all current MQSeries books are
also available from the MQSeries product family
Web site at:

http://www.ibm.com/software/mqseries/

BookManager® format
The MQSeries library is supplied in IBM
BookManager format on a variety of online
library collection kits, including the Transaction
Processing and Data collection kit, SK2T-0730. You
can view the softcopy books in IBM BookManager
format using the following IBM licensed
programs:

BookManager READ/2
BookManager READ/6000
BookManager READ/DOS
BookManager READ/MVS
BookManager READ/VM
BookManager READ for Windows

PostScript format
The MQSeries library is provided in PostScript
(.PS) format with many MQSeries Version 2
products. Books in PostScript format can be
printed on a PostScript printer or viewed with a
suitable viewer.

Windows Help format
The MQSeries for Windows User’s Guide is
provided in Windows Help format with MQSeries
for Windows Version 2.0 and MQSeries for
Windows Version 2.1.

MQSeries information available
on the Internet
The MQSeries product family Web site is at:

http://www.ibm.com/software/mqseries/

By following links from this Web site you can:
v Obtain latest information about the MQSeries

product family.
v Access the MQSeries books in HTML and PDF

formats.
v Download MQSeries SupportPacs.

Related publications
For information about other products that are
referred to in this book, see the following books:

OS/390
v OS/390 Planning For Installation, GC28-1726
v MVS Installation Exits, GC28-1753
v MVS Setting up a Sysplex, GC28-1779
v MVS Programming: Callable Services for High

Level Languages, GC28-1768
v MVS Support for Measured License Charges,

GC28-1098

CICS Transaction Server for
OS/390
v XRF Guide, SC33-0661
v Customization Guide, SC33-1683
v Intercommunication Guide, SC33-1695
v Recovery and Restart Guide, SC33-1698
v Internet and External Interfaces Guide, SC33-1944

CICS for MVS/ESA Version 4
v XRF Guide, SC33-0661
v Customization Guide, SC33-1165
v Intercommunication Guide, SC33-1181
v Recovery and Restart Guide, SC33-1182

IMS
v Customization Guide, SC26-8020
v Administration Guide: System, SC26-8013
v Open Transaction Manager Access Guide,

SC26-8026

DFSMS/MVS
v Access Method Services for VSAM, SC26-4905
v Access Method Services for the Integrated Catalog

Facility, SC26-4906

Other products
v DFP Storage Administration Reference, SC26-4566
v DB2 for OS/390 Installation Guide, GC26-8970
v MQSeries Workflow for OS/390: Customization and

Administration, SC33-7030
v MQSeries Workflow: Concepts and Architecture,

GH12-6285
v Data Facility Hierarchical Storage Manager User’s

Guide, SH35-0093

Bibliography

Bibliography 177

Related publications

178 Concepts and Planning Guide

Index

A
abnormal termination

maintaining consistency 53
what happens to MQSeries 54

accounting, what’s new for this
release 151

accounting trace 83
active log

introduction 5, 33
number of logs required 128
placement 128
printing 80
size of logs required 128

adapters, illustration 3
address space storage requirements 107
alias queue, default definition 42
alternate user security 65
alternative-site recovery 138
API-crossing exit 91
API-resource security 64
application environments,

introduction 6
Application Messaging Interface

(AMI) 152
application programming

application takeover 22
connection tag 22
dynamic queues 23
index queues 23
maximum message size 23
migrating applications to use shared

queues 24
naming conventions for queues 145
persistent messages 23
queue-sharing groups 22
serialized applications 22
what’s new for this release 152
when to use shared queues 23

archive log
archiving to DASD 130
archiving to tape 129
introduction 5, 33
printing 80
storage required 109, 129
tape or DASD 129
using SMS with 130

archiving, system parameters 41
ARM (Automatic Restart Manager)

concepts 71
shared queues 69

Automatic Restart Manager (ARM)
concepts 71
shared queues 69

availability
Automatic Restart Manager

(ARM) 71
Coupling Facility 15
example 16
Extended Recovery Facility (XRF) 72
increased 69
network 18

availability (continued)
shared channels 70
shared queues 11, 69

B
back out 50
backup

frequency 132
general tips 132
page sets 134
planning 131
point of recovery 132
using DFHSM 137
what to back up 132

Batch adapter 104
bibliography 175
BookManager 177
bootstrap data set (BSDS)

change 80
commands 76
dual mode 39
introduction 5, 39
printing 80
size 127

BSDS (bootstrap data set)
change 80
commands 76
dual mode 39
introduction 39
printing 80
size 127

buffer pools
commands 76
defining 77
effect on restart time 120
illustration 30
introduction 4, 30
performance statistics 83
planning 120
relationship to messages and page

sets 30
sample definitions 45
tuning 120
usage 120

C
CF (Coupling Facility)

abnormal disconnection from 59
amount of data held 15
failure 60
illustration 11
performance statistics 83
planning the environment 123
storage requirements 111
structure size 124

CF structures
example definition statements 125
naming conventions 146

CF structures (continued)
peer recovery 59
planning 123
size 124
using more than one 123

change log inventory utility 80
channel initiator

and queue-sharing groups,
illustration 18

commands 76
defining objects at startup 78
generic port 19
illustration 7
increased availability 69
introduction 7
required queues 43
sample object definitions 46
sample startup definitions 48
shared channels 18
system parameters 41
what’s new for this release 149
workload balancing 19

channel listener
commands 76
introduction 8

channels
commands 75, 76
default definition 42
features 20
maximum number 108
naming conventions 146
peer recovery 19
security 67
shared 18

checkpoint log records 35
CICS

consistency with MQSeries 51
definition of term xi
resolving in-doubt units of

recovery 56
CICS adapter

alert monitor 90
API–crossing exit 91
auto-reconnect 90
components 88
control functions 88
conventions 92
illustration 89
introduction 87
MQI support 88
multitasking 91
sample object definitions 47
task initiator 90

CICS bridge
3270 transaction, illustration 96
3270 transactions 95
DPL program, illustration 94
introduction 93
prerequisite products 142
running DPL programs 94
system configuration 93

© Copyright IBM Corp. 1993, 2000 179

CICS bridge (continued)
when to use 93

CKAM transaction 90
CKQC transaction 88
CKTI transaction 90
Client Attachment Feature 142
client channel definition files, create 79
clusters

and queue-sharing groups,
illustration 21

commands 76
introduction 8
queue-sharing groups 21
required queues 43
sample object definitions 46

command prefix strings (CPF) 146
command resource security 67
command security 66
command server, commands 76
commands

directing to another queue
manager 75

disposition 73
initialization 77
issuing 73
scope 75
what’s new for this release 150

commit
single-phase 51
two-phase 51

commit point, definition 49
compensating log records 34
concepts

Automatic Restart Manager
(ARM) 71

bootstrap data set (BSDS) 33
buffer pools 30
channel initiator 7
commit point 49
logging 33
monitoring 83
page sets 27
point of consistency 49
queue managers 3
queue-sharing groups 11
security 61
shared queues 11
statistics 83
storage classes 28
storage management 27
syncpoint 49
system parameters 41
termination 54
unit of recovery 49

connection environment, system
parameters 41

connection security 64
connection tag 22
context security 65
copy a page set 79
copy a page set and reset the log 79
copy a queue 79
copy files intended for customer use 157
Coupling Facility (CF)

abnormal disconnection from 59
amount of data held 15
failure 60

Coupling Facility (CF) (continued)
illustration 11
introduction 15
performance statistics 83
planning the environment 123
storage requirements 111
structure size 124

Coupling Facility structures
example definition statements 125
naming conventions 146
planning 123
using more than one 123

CPF (command prefix string) 146
CSA storage requirements 107
CSQ1LOGP utility 80
CSQ5PQSG utility 80
CSQINP1

input data set 77
sample 45

CSQINP2
input data set 77
samples 45

CSQINPX input data set 78
CSQJU003 utility 80
CSQJU004 utility 80
CSQUCVX utility 79
CSQUDLQH utility 80
customization 147

D
data conversion exit utility 79
data manager, performance statistics 83
data set space management 28
data-sharing group 13
DB2

in a queue-sharing group,
illustration 13

naming conventions 145
perform tasks for queue-sharing

groups 80
performance statistics 83
planning the environment 126
RRS Attach 126
shared repository 12
storage requirements 110

dead-letter queue 44
handler utility 80
sample definition 47
shared 24
what’s new for this release 152

DEFAULT storage class 44
default transmission queue, sample

definition 47
defining objects at startup 77
DFHSM 137
disaster recovery 138
disposition (object) 73
distributed queuing

and queue-sharing groups,
illustration 18

default transmission queue 44
defining objects at startup 78
definition of term xi
generic port 19
illustration 7
intra-group queuing 20
introduction 7

distributed queuing (continued)
required queues 43
sample object definitions 46
sample startup definitions 48
shared channels 18
workload balancing 19

distributed queuing with CICS, sample
definitions 48

distribution libraries, storage
requirements 111

dual logging 34
dynamic queues, shared 23

E
ECSA storage requirements 107
empty a queue 79
events 83
Extended Recovery Facility (XRF) 72

F
format a page set 79

G
generic port 19
global definitions

definition 73
manipulating 74

glossary 165
GROUP objects 73

H
high availability

Coupling Facility 15
example 16
network 18
shared queues 11

HTML (Hypertext Markup
Language) 176

Hypertext Markup Language
(HTML) 176

I
IMS

consistency with MQSeries 51
definition of term xi
resolving in-doubt units of

recovery 57
IMS adapter

IMS language interface module 100
introduction 99
trigger monitor 100
using the adapter 100

IMS bridge
illustration 101
introduction 101
submitting transactions 102

IMS Tpipes, commands 76
in-backout unit of recovery 53
in-commit unit of recovery 53
in-doubt unit of recovery

definition 53

180 Concepts and Planning Guide

in-doubt unit of recovery (continued)
resolving from CICS 56
resolving from IMS 57
resolving from RRS 58

in-flight unit of recovery 53
include files intended for customer

use 158
index queues

rebuilding indexes 55
shared queues 23

initialization commands 77
initialization parameters 5
initiation queue, shared 24
installation verification program

(IVP) 147
sample definitions 48

Internet Gateway
introduction 6
prerequisite products 142

intra-group queuing
introduction 20
required queues 43
sample object definitions 45

introduction 3
issuing commands 73
IVP (installation verification

program) 147
sample definitions 48

J
Japanese language support 143

L
listener

commands 76
introduction 8

load messages on a queue 79
local queue, default definition 42
lock manager, performance statistics 83
log offload, illustration 37
log print utility 80
logging

active log 33
active log placement 128
archive log 33
archives on tape or DASD 129
archiving to DASD 130
archiving to tape 129
change log inventory 80
commands 76
dual logging 34
illustration 36
introduction 5, 33
number of active log data sets 128
number of log data sets 127
performance statistics 83
planning archive storage 129
planning the environment 127
print log map 80
printing the log 80
relative byte address (RBA) 34
single logging 34
single or dual? 127
size of active log data sets 128
size of log data sets 127

logging (continued)
storage required 109
system parameters 41
using SMS with archives 130
what’s new for this release 151
when the log is off-loaded 37
when the log is written 36

M
machine requirements 141
macros intended for customer use 157
manipulating objects at startup 77
maximum message size, shared

queues 23
MCA, introduction 7
measured usage license charges 159
message channel agent, introduction 7
messages

commands 76
maximum length for shared

queues 15
relationship to buffer pools and page

sets 30
retrieving in correct order 22
storage requirements 115
storing 27

migrating applications to use shared
queues 24

migration
overview 153
reverting to a previous version 154

model queue, default definition 42
mover 7
MQI, performance statistics 83
MQINQ and shared queues 24
MQSeries for OS/390

illustration 3
introduction 3

MQSeries publications 175
MQSeries workflow, prerequisite

products 142

N
name server, introduction 8
namelists

commands 75
default definition 42
naming conventions 145
security 65

naming conventions 144
national language support 143
NetView 83
new function 149
NODEFINE storage class 44
normal termination 54

O
object definitions

backing up shared 60
recording 79
where stored 27

objects
defining and manipulating at

startup 77

objects (continued)
disposition 73
naming conventions 145

Open Transaction Manager Access
(OTMA) 102

operations and control panels 73
what’s new for this release 152

OTMA (Open Transaction Manager
Access) 102

P
page set control log records 35
page sets

back up frequency 134
calculating the size 114
commands 76
copy 79
copy and reset the log 79
defining 77
dynamic expansion 118
format 79
illustration 30
introduction 4, 27
maximum size 27
number 113
page set zero 27
planning 113
recovery 134
relationship to messages and buffer

pools 30
relationship to queues and storage

classes 28
sample definitions 45
size 113
space management 28
usage 113

PDF (Portable Document Format) 176
peer recovery

shared channels 19
shared queues 17

performance
trace 83
tuning buffer pools 120

persistent messages, shared queues 23
planning

alternative-site recovery 138
backup and recovery 131
buffer pools 120
CF structures 123
command prefix strings (CPF) 146
communications protocol 144
Coupling Facility environment 123
customization 147
DB2 environment 126
installation 143
logging environment 127
machine requirements 141
naming conventions 144
national language support 143
page sets 113
prerequisite products 141
software requirements 141
storage requirements 107

point of consistency, definition 49
port, generic 19
Portable Document Format (PDF) 176
PostScript format 177

Index 181

prerequisite products 141
print log map utility 80
private channels, features 20
private definitions 73
private region storage requirements 107
processes

commands 75
default definition 42
security 65

product libraries, storage
requirements 111

publications
MQSeries 175

Q
QMGR objects 73
queue managers

commands 76
communication between 7, 20
illustration 3
in a queue-sharing group,

illustration 11
increased availability 69
introduction 3
naming conventions 145

queue-sharing groups
advantages 16
and clusters, illustration 21
and distributed queuing,

illustration 18
application programming 22
Automatic Restart Manager

(ARM) 69, 71
availability 69
clusters 21
command scope 75
commands 76
definition 13
distributed queuing 18
illustration 11
increased availability 69
introduction 4
naming conventions 145
peer recovery 59
perform DB2 tasks 80
prerequisite products 142
recovery 59
required queues 43
resolving units of work manually 17
sample object definitions 45
security 62
sharing object definitions 73
specifying name 14
transactional recovery 59
using MQINQ 24
What’s new for this release 149

queues
commands 75, 76
copy 79
empty 79
load messages 79
mapping to page sets 28
naming conventions 145
relationship to storage classes and

page sets 28
security 64

queues (continued)
storing 27

R
RBA (relative byte address) 34
recoverable objects, defining and

manipulating at startup 77
recovery

achieving specific targets 136
after abnormal termination 53
after Coupling Facility failure 60
alternative-site recovery 138
backup frequency 132
by peers in shared channel

environment 19
by peers in shared queue

environment 17
CICS 138
general tips 132
IMS 138
introduction 5, 49
page sets 134
performance 120
planning 131
point of recovery 132
procedures 131
queue-sharing groups 59
using DFHSM 137
what happens 55
what to back up 132
XRF 72

region sizes 108
relative byte address (RBA) 34
remote queue, default definition 42
REMOTE storage class 44
RESLEVEL security profile 63
Resource Recovery Services (RRS)

adapter 104
resolving in-doubt units of

recovery 58
restart

after abnormal termination 53
after Coupling Facility failure 60
introduction 5, 49
performance 120
queue-sharing groups 59
what happens 55

reverting to a previous version 154
RRS (Resource Recovery Services)

adapter 104
resolving in-doubt units of

recovery 58

S
sample definitions, system objects 45
security

channels 67
commands 76
enabling 61
if you do nothing 61
introduction 61
number of user IDs checked 63
queue manager level 62
queue-sharing group level 62

security (continued)
RESLEVEL profile 63
resources you can protect 64
sample definitions 45
what’s new for this release 151

serialized applications 22
shared channels

availability 70
features 20
inbound 18, 19
increased availability 70
maximum message length 20
naming conventions 146
outbound 19
peer recovery 19
required queues 43
sample object definitions 45
status table 20
workload balancing 19

shared definition 74
SHARED objects 74
shared queues

accessing 13
advantages 16
and clusters, illustration 21
and distributed queuing,

illustration 18
application programming 22
Automatic Restart Manager

(ARM) 69, 71
availability 69
clusters 21
dead-letter queue 24
default definition 42
definition 11
distributed queuing 18
high availability 11
illustration 16
increased availability 69
initiation queue 24
introduction 4
mapping to CF structures 126
maximum message length 15
naming conventions 145
peer recovery 17, 59
recovery 59
required queues 43
resolving units of work manually 17
shared repository 12
sharing object definitions 73
SYSTEM.* queues 24
transactional recovery 59
using MQINQ 24
where messages are held 15

shared repository
advantages 12
introduction 12

shared transmission queue 19
Simplified Chinese language

support 143
single logging 34
single-phase commit 51
SMS, using with MQSeries 38
softcopy books 176
software requirement 141
statistics, what’s new for this release 151

182 Concepts and Planning Guide

storage classes
changing 29
commands 75
default definition 42
illustration 28
introduction 28
naming conventions 146
relationship to queues and page

sets 28
required definitions 44
sample definitions 47

storage management 27
Storage Management Subsystem (SMS),

using with MQSeries 38
storage manager, performance

statistics 83
storage requirements

address space 107
archive storage 109
Coupling Facility 111
DB2 110
introduction 107
logs 109
messages 115
private region 107
product libraries 111
region sizes 108

structures, size 124
subsystem security 62
supervisor, introduction 8
SupportPac 177
syncpoint, definition 49
SYSLNGLV storage class 44
SYSTEM.* queues, shared 24
SYSTEM.ADMIN.* queues 43
system administration objects

introduction 43
sample definitions 45

SYSTEM.CHANNEL.INITQ 43
SYSTEM.CHANNEL.REPLY.INFO

queue 43
SYSTEM.CHANNEL.SYNCQ 43
SYSTEM.CLUSTER.* queues 43
SYSTEM.COMMAND.* queues 42
system command objects

introduction 42
sample definitions 45

system default objects
introduction 42
sample definitions 45

system object samples, what’s new for
this release 151

system objects
introduction 42
sample command to display 47
sample definitions 45

system parameters
introduction 41
what’s new for this release 150

SYSTEM.QSG.* queues 43
SYSTEM.QSG.TRANSMIT.QUEUE 20
SYSTEM storage class 44
SYSVOLAT storage class 44

T
target libraries, storage requirements 111
TCP/IP Domain Name System 18

termination
abnormal 54
normal 54

terminology used in this book 165
thlqual, definition of term xi
threads

accounting statistics 83
commands 76

trace
commands 76
introduction 83
system parameters 41
what’s new for this release 151

transmission queue
default 44
sample definition 47
shared 19

triggering, using a shared initiation
queue 25

two-phase commit
illustration 52
introduction 51

U
U.S. English (mixed case) support 143
U.S. English (uppercase) support 143
undo/redo log records 34
unit of recovery

back out 50
definition 49
illustration 49
illustration of back out 50
in-backout 53
in-commit 53
in-doubt 53
in-flight 53
peer recovery 17
resolving from CICS 56
resolving from IMS 57
resolving from RRS 58

unit of recovery log records 34
unresolved unit of work, peer

recovery 17
user IDs, number checked for

security 63
utility programs

change log inventory 80
CSQ1LOGP 80
CSQ5PQSG 80
CSQJU003 80
CSQJU004 80
CSQUCVX 79
CSQUDLQH 80
CSQUTIL 79
data conversion 79
dead-letter queue handler 80
log print 80
print log map 80
queue-sharing group 80

V
VTAM generic resources 18

W
What’s new for this release 149
Windows Help 177
workload balancing

shared channels 19
shared queues 16

Index 183

184 Concepts and Planning Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–870229
– From within the U.K., use 01962–870229

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 1993, 2000 185

186 Concepts and Planning Guide

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC34-5650-00

	Contents
	Figures
	Tables
	About this book
	Who this book is for
	What you need to know to understand this book
	Conventions used in this book
	What's new for this release

	Part 1. Introduction
	Chapter 1. Introduction
	What is a queue manager?
	The queue manager subsystem
	Shared queues
	Page sets and buffer pools
	Logging
	Tailoring the queue manager environment
	Recovery and restart
	Security
	Availability
	Manipulating objects
	Monitoring and statistics
	Application environments
	Internet Gateway

	What is a channel initiator?
	Queue manager clusters

	Part 2. MQSeries for OS/390 concepts
	Chapter 2. Shared queues and queue-sharing groups
	What is a shared queue?
	Messages can be accessed by any queue manager
	Queue definition shared by all queue managers

	What is a queue-sharing group?
	Where are shared queue messages held?
	The Coupling Facility

	Advantages of using shared queues
	High availability
	Peer recovery

	Distributed queuing and queue-sharing groups
	Shared channels
	Shared inbound channels
	Shared outbound channels
	Shared channel summary
	Shared channel status

	Intra-group queuing
	Clusters and queue-sharing groups

	Application programming with shared queues
	Serializing your applications
	Applications that are not suitable for use with shared queues
	Deciding whether to share non-application queues
	Migrating your existing applications to use shared queues

	Where to find more information

	Chapter 3. Storage management
	Page sets
	Storage classes
	How storage classes work

	Buffers and buffer pools
	Where to find more information

	Chapter 4. Logging
	What logs are
	Archiving
	Dual logging
	Log data
	Unit-of-recovery log records
	Checkpoint records
	Page set control records

	How the log is structured
	Physical and logical log records

	How the logs are written
	When the active log is written
	When the archive log is written
	Triggering an off-load
	The off-load process
	Interruptions and errors while off-loading
	Messages during off-load

	MQSeries and SMS

	What the bootstrap data set is for
	Archive log data sets and BSDS copies

	Where to find more information

	Chapter 5. Defining your system
	Setting system parameters
	Defining system objects
	System default objects
	System command objects
	System administration objects
	Channel queues
	Cluster queues
	Queue-sharing group queues
	Storage classes
	Dead-letter queue
	Default transmission queue

	Sample definitions supplied with MQSeries
	The CSQINP1 sample
	CSQ4INSG system object sample
	CSQ4INSS system object sample
	CSQ4INSX system object sample
	CSQ4INYC object sample
	CSQ4INYD object sample
	CSQ4INYG object sample
	Default transmission queue
	CICS adapter objects

	CSQ4DISP display sample
	CSQ4DISQ distributed queuing using CICS sample
	CSQ4INPX sample
	CSQ4IVPQ and CSQ4IVPG samples

	Where to find more information

	Chapter 6. Recovery and restart
	How changes are made to data
	Units of recovery
	Backing out work

	How consistency is maintained
	Consistency with CICS or IMS
	Illustration of the two-phase commit process

	How consistency is maintained after an abnormal termination

	What happens during termination
	Normal termination
	Abnormal termination

	What happens during restart and recovery
	Rebuilding queue indexes

	How in-doubt units of recovery are resolved
	How in-doubt units of recovery are resolved from CICS
	How in-doubt units of recovery are resolved from IMS
	How in-doubt units of recovery are resolved from RRS

	Shared queue recovery
	Transactional recovery
	Peer recovery
	Shared queue definitions
	Coupling Facility failure

	Where to find more information

	Chapter 7. Security
	Why you need to protect MQSeries resources
	If you do nothing

	Security controls and options
	Subsystem security
	Queue manager or queue-sharing group level checking
	Controlling the number of user IDs checked

	Resources you can protect
	Connection security
	API-resource security
	Queue security
	Process security
	Namelist security
	Alternate user security
	Context security

	Command security
	Command resource security

	Channel security
	Where to find more information

	Chapter 8. Availability
	Shared queues
	Shared channels
	Using the OS/390 Automatic Restart Manager (ARM)
	Using the OS/390 Extended Recovery Facility (XRF)
	Where to find more information

	Chapter 9. Creating and managing objects
	Issuing commands
	Private and global definitions
	Manipulating global definitions

	Directing commands to different queue managers
	Administrator commands
	System control commands
	Initialization commands
	Initialization commands for distributed queuing

	The MQSeries for OS/390 utilities
	The CSQUTIL utility
	The data conversion exit utility
	The change log inventory utility
	The print log map utility
	The log print utility
	The queue-sharing group utility
	The dead-letter queue handler utility

	Where to find more information

	Chapter 10. Monitoring and statistics
	MQSeries trace
	Events
	Where to find more information

	Part 3. MQSeries and other products
	Chapter 11. MQSeries and CICS
	The CICS adapter
	Control functions
	MQI support
	Adapter components
	Alert monitor
	Auto-reconnect
	Task initiator
	Multi-tasking
	The API-crossing exit
	CICS adapter conventions
	Temporary storage queue names
	MQGET
	ENQUEUE names

	The CICS bridge
	When to use the CICS bridge
	System configuration for the CICS bridge

	Running CICS DPL programs
	Running CICS 3270 transactions

	Where to find more information

	Chapter 12. MQSeries and IMS
	The IMS adapter
	Using the adapter
	System administration and operation with IMS
	The IMS trigger monitor
	How it works

	The IMS bridge
	What is OTMA?
	Submitting IMS transactions from MQSeries

	Where to find more information

	Chapter 13. MQSeries and OS/390 Batch and TSO
	Introduction to the Batch adapters
	The Batch/TSO adapter
	The RRS adapter
	Where to find more information

	Part 4. Planning your MQSeries environment
	Chapter 14. Planning your storage requirements
	Address space storage
	Private region storage usage
	Region sizes

	Logs and archive storage
	DB2 storage
	Coupling Facility storage
	Page set and message storage
	Library storage
	Where to find more information

	Chapter 15. Planning your page sets and buffer pools
	Planning your page sets
	Calculating the size of your page sets
	Page set zero
	Page sets 01 to 99
	Calculating the storage requirement for messages

	Enabling dynamic page set expansion
	How to determine an appropriate secondary extent value
	Number of extents available
	Multivolume data sets

	Defining your buffer pools

	Chapter 16. Planning your Coupling Facility and DB2environment
	Defining Coupling Facility resources
	Planning your structures
	Using multiple structures

	Planning the size of your structures
	Mapping shared queues to structures

	Planning your DB2 environment

	Chapter 17. Planning your logging environment
	Planning your logs
	Log data set definitions
	Should your installation use single or dual logging?
	How many active log data sets do you need?
	How large should the active logs be?
	Active log placement

	Planning your archive storage
	Should your archive logs reside on tape or DASD?
	Archiving to tape
	Archiving to DASD volumes
	Using SMS with archive log data sets

	Chapter 18. Planning for backup and recovery
	Recovery procedures
	General tips for backup and recovery
	Periodically take backup copies
	Backing up your object definitions

	Do not discard archive logs you might need
	Do not change the DDname to page set association

	Recovering page sets
	How often should a page set be backed up?

	Achieving specific recovery targets
	Periodic review of backup frequency

	Backup and recovery with DFHSM
	MQSeries recovery and CICS
	MQSeries recovery and IMS
	Preparing for recovery on an alternative site

	Part 5. Planning to install MQSeries
	Chapter 19. MQSeries Prerequisites
	Machine requirements
	Software requirements
	Additional requirements for some features
	Non-IBM products
	Clients

	Delivery

	Chapter 20. Making MQSeries available
	Installing MQSeries for OS/390
	National language support
	Communications protocol and distributed queuing
	Naming conventions
	Choosing names for queue managers and queue-sharing groups
	Choosing names for objects
	Choosing names for channels

	Using command prefix strings

	Customizing MQSeries and its adapters
	Verifying your installation of MQSeries for OS/390

	Chapter 21. Migrating from previous versions
	What's new for this release
	Queue-sharing groups
	Channel initiator
	Commands
	System parameters
	System object samples
	Logs
	Security
	Statistics and accounting
	Operations and control panels
	Dead-letter queue
	Application programming

	What to do when you migrate from a previous version
	Reverting to a previous version

	Part 6. Appendixes
	Appendix A. Macros intended for customer use
	General-use programming interface macros
	Product-sensitive programming interface macros
	General-use programming interface copy files
	General-use programming interface include files

	Appendix B. Measured usage license charges with MQSeriesfor OS/390
	Appendix C. Notices
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	MQSeries cross-platformpublications
	MQSeries platform-specificpublications
	Softcopy books
	HTML format
	Portable Document Format (PDF)
	BookManager® format
	PostScript format
	Windows Help format

	MQSeries information availableon the Internet
	Related publications
	OS/390
	CICS Transaction Server forOS/390
	CICS for MVS/ESA Version 4
	IMS
	DFSMS/MVS
	Other products

	Index
	Sending your comments to IBM

